Skip to main content
Log in

In situ assembly of ZSM-5 nanocrystals into micro-sized single-crystal-like aggregates via acid-catalyzed hydrolysis of tetraethylorthosilicate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZSM-5 aggregates were synthesized with the silica source tetraethylorthosilicate (TEOS) being hydrolyzed at acidic conditions to produce siliceous precursors, followed by the addition of aluminum sulfate and tetrapropyl ammonium bromide (TPABr), and with the resulting gel mixture being hydrothermally crystallized at basic conditions. The obtained products were characterized by XRD, SEM, and N2 adsorption. Well crystallized ZSM-5 can be successfully synthesized through the sulfuric acid-catalyzed hydrolysis of TEOS within a short crystallization time 35 h. The thus produced micro-sized single-crystal-like zeolite ZSM-5 aggregates (10 μm) are made of uniformly distributed nanocrystals with sizes of about 200 nm. Moreover, by adjusting the hydrothermal reaction parameters, such as increasing the crystallization temperature, the TPABr/SiO2 ratio and the pH value of reaction solution, the crystallization is accelerated substantially. Also, the moderate H2O/SiO2 molar ratio of 20–60 in the synthesis mixture can lead to pure ZSM-5, and yet the optimal ratio is 40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Argauer RJ, Landolt GR (1972) US Patent 3702866

  2. Derouane EG, Determmerie S, Gabelica Z, Blom N (1981) Appl Catal 1:201

    Article  CAS  Google Scholar 

  3. Hölderich W, Hesse M, Näumann F (1988) Angew Chem Int Ed 27:226

    Article  Google Scholar 

  4. Kumar N, Lindfors LE, Byggningsbacka R (1996) Appl Catal A Gen 139:189

    Article  CAS  Google Scholar 

  5. Byggningsbacka R, Kumar N, Lindfors LE (1998) J Catal 178:611

    Article  CAS  Google Scholar 

  6. Rajagopalan K, Peters AW, Edwards GC (1986) Appl Catal 23:69

    Article  CAS  Google Scholar 

  7. Camblor MA, Corma A, Martínez A, Mocholí FA, Pariente JP (1989) Appl Catal 55:65

    Article  CAS  Google Scholar 

  8. Vogel B, Schneider C, Klemm E (2002) Catal Lett 79:107

    Article  CAS  Google Scholar 

  9. Davis ME (2002) Nature 417:813

    Article  CAS  Google Scholar 

  10. Zheng Z, Hall AS, Guliants VV (2008) J Mater Sci 43:2499. doi:https://doi.org/10.1007/s10853-008-2560-y

    Article  CAS  Google Scholar 

  11. Tosheva L, Valtchev VP (2005) Chem Mater 17:2494

    Article  CAS  Google Scholar 

  12. Mintova S, Voltchev V (2002) Microporous Mesoporous Mater 55:171

    Article  CAS  Google Scholar 

  13. Mohamed RM, Aly HM, El-Shahat MF, Ibrahim IA (2005) Microporous Mesoporous Mater 79:7

    Article  CAS  Google Scholar 

  14. Reding G, Mäurer T, Kraushaar-Czarnetzki B (2003) Microporous Mesoporous Mater 57:83

    Article  CAS  Google Scholar 

  15. Li ZJ, Li S, Luo HM, Yan YS (2004) Adv Funct Mater 14:1019

    Article  Google Scholar 

  16. Cooper CA, Lin YS (2007) J Mater Sci 42:320. doi:https://doi.org/10.1007/s10853-006-1020-9

    Article  CAS  Google Scholar 

  17. Grieken RV, Sotelo JL, Menéndez JM, Melero JA (2000) Microporous Mesoporous Mater 39:135

    Article  Google Scholar 

  18. Aguado J, Serrano DP, Escola JM, Rodríguez JM (2004) Microporous Mesoporous Mater 75:41

    Article  CAS  Google Scholar 

  19. Li Q, Mihailova B, Creaser D, Sterte J (2000) Microporous Mesoporous Mater 40:53

    Article  CAS  Google Scholar 

  20. Li Q, Mihailova B, Creaser D, Sterte J (2001) Microporous Mesoporous Mater 43:51

    Article  CAS  Google Scholar 

  21. Tuel A, Taârit YB (1994) Zeolites 14:594

    Article  CAS  Google Scholar 

  22. Tan B, Rankin SE (2006) J Phys Chem B 110:22353

    Article  CAS  Google Scholar 

  23. Wu YJ, Ren XQ, Wang J (2009) Mater Chem Phys 113:773

    Article  CAS  Google Scholar 

  24. Wu YJ, Ren XQ, Lu YD, Wang J (2008) Mater Lett 62:317

    Article  CAS  Google Scholar 

  25. Brinker CJ, Scherer GW (1985) J Non-Cryst Solids 70:301

    Article  CAS  Google Scholar 

  26. Sanchez J, McCormick A (1992) J Phys Chem 96:8973

    Article  CAS  Google Scholar 

  27. Šefčík J, McCormick AV (1997) Catal Today 35:205

    Article  Google Scholar 

  28. Serrano DP, Uguina MA, Sanz R, Castillo E, Rodríguez A, Sánchez P (2004) Microporous Mesoporous Mater 69:197

    Article  CAS  Google Scholar 

  29. Ding L, Zheng Y, Zhang Z, Ring Z, Chen J (2006) Microporous Mesoporous Mater 94:1

    Article  CAS  Google Scholar 

  30. Madhusoodana CD, Das RN, Kameshima Y, Okada K (2005) J Porous Mat 12:273

    Article  CAS  Google Scholar 

  31. Thompson RW (1998) Mol Sieves 1:1

    Article  Google Scholar 

  32. Phiriyawirut P, Magaraphan R, Jamieson AM, Wongkasemjit S (2003) Mater Sci Eng A 361:147

    Article  Google Scholar 

  33. Fouad OA, Mohamed RM, Hassan MS, Ibrahim IA (2006) Catal Today 116:82

    Article  CAS  Google Scholar 

  34. Mohamed MM, Zidan FI, Fodail MH (2007) J Mater Sci 42:4066. doi:https://doi.org/10.1007/s10853-006-0172-y

    Article  CAS  Google Scholar 

  35. Lok BM, Cannan TR, Messina CA (1983) Zeolites 3:282

    Article  CAS  Google Scholar 

  36. McCormick AV, Bell AT (1989) Catal Rev Sci Eng 31(1–2):97

    Article  CAS  Google Scholar 

  37. Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1995) Zeolites 15:611

    Article  CAS  Google Scholar 

  38. Gabelica Z, Derouane EG, Blom N (1983) Appl Catal 5:109

    Article  CAS  Google Scholar 

  39. Suzuki K, Kiyozumi Y, Matsuzaki K, Shin S (1987) Appl Catal 35:401

    Article  CAS  Google Scholar 

  40. Ko YS, Ahn WS (2004) Powder Technol 145:10

    Article  Google Scholar 

  41. Thoma SG, Nenoff TM (2000) Microporous Mesoporous Mater 41:295

    Article  CAS  Google Scholar 

  42. Kim SD, Noh SH, Seong KH, Kim WJ (2004) Microporous Mesoporous Mater 72:185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Key Natural Science Foundation for Universities of Jiangsu Province (06KJA53012), National Natural Science Foundation of China (No. 20776069) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT 0732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Wu, Y., Wang, J. et al. In situ assembly of ZSM-5 nanocrystals into micro-sized single-crystal-like aggregates via acid-catalyzed hydrolysis of tetraethylorthosilicate. J Mater Sci 44, 3777–3783 (2009). https://doi.org/10.1007/s10853-009-3508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3508-6

Keywords

Navigation