Skip to main content
Log in

Effect of etch-treatment upon the intensity and peak position of photoluminescence spectra for anodic alumina films with ordered nanopore array

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous anodic alumina membranes (AAMs) were prepared in oxalic acid and then carried on an etch-treatment in phosphoric acid. Using the etch-treatment the photoluminescence (PL) intensity of AAMs increases by a factor of 1/3. The effect of etch-treatment upon the intensity and peak position of photoluminescence (PL) spectra was investigated. It was found that the intensity of the photoluminescence (PL) spectra increased with the etching time increasing. A PL spectrum can be divided into two subbands with the peak at 434 and 460 nm, respectively. As the etching time prolongs, the intensity of the peak of 434 nm subband increases and that of the 460 nm subband rises firstly and then decreases. It can be explained by that two luminescence centers (F and F+ centers) coexist in AAMs. F centers are concentrated in the surface layer and F+ centers are enriched in the depth of pore wall. The increment of the PL intensity comes from the contribution of F+ photoluminescence centers concentrated in the depth of pore wall in AAMs. This work will be beneficial to improving the photoluminescence intensity and understanding the light-emitting mechanisms for related materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Masuda H, Fukuda K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  2. Furneaux RC, Rigby WR, Davidson AP (1989) Nature 337:147

    Article  CAS  Google Scholar 

  3. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) J Appl Phys 84:6023

    Article  CAS  Google Scholar 

  4. Masuda H, Satoh M (1996) Jpn J Appl Phys Part 2 35:L126

    Article  CAS  Google Scholar 

  5. Routkevicth D, Bigioni T, Xu JM, Moskovits M (1996) J Phys Chem 100:14037

    Article  Google Scholar 

  6. Li Y, Zhang LD, Phillipp F, Meng GW (2000) Appl Phys Lett 76:2011

    Article  CAS  Google Scholar 

  7. Johansson A, Lu J, Carlsson J-O, Boman M (2004) J Appl Phys 96:5189

    Article  CAS  Google Scholar 

  8. Sauer G, Brehm G, Schneider S, Nielsch K, Wehrspohn RB, Choi J, Hofmeister H, Gösele U (2002) J Appl Phys 91:3243

    Article  CAS  Google Scholar 

  9. Zhang Z, Sun X, Dresselhaus MS, Ying JY, Heremans JP (1998) Appl Phys Lett 73:1589

    Article  CAS  Google Scholar 

  10. Sung SL, Tsai SH, Tseng CH, Chiang FK, Liu XW, Shih HC (1999) Appl Phys Lett 74:197

    Article  CAS  Google Scholar 

  11. Yamamoto Y, Baba N, Tajima S (1981) Nature 289:572

    Article  CAS  Google Scholar 

  12. Li GH, Zhang Y, Wu YC, Zhang LD (2003) J Phys Condens Matter 15:8663

    Article  CAS  Google Scholar 

  13. Du Y, Cai WL, Mo CM, Chen J, Zhang LD, Zhu XG (1999) Appl Phys Lett 74:2951

    Article  CAS  Google Scholar 

  14. Li Z, Huang K (2007) J Phys Condens Matter 19:216203

    Article  Google Scholar 

  15. Li YB, Zheng MJ, Ma L (2007) Appl Phys Lett 91:073109

    Article  Google Scholar 

  16. Huang GS, Wu XL, Siu GG, Chu PK (2006) Solid State Commun 137:621

    Article  CAS  Google Scholar 

  17. Huang GS, Wu XL, Mei YF, Shao XF, Siu GG (2003) J Appl Phys 93:582

    Article  CAS  Google Scholar 

  18. Green S, Badan JA, Gillesl M, Cortes A, Riveros G, Ramirez D, Gómez H, Quagliata E, Dalchiele EA, Maeotti RE (2007) Phys Stat Sol C 4:618

    CAS  Google Scholar 

  19. Balko BA, Richmond GL (1993) J Phys Chem 97:9002

    Article  CAS  Google Scholar 

  20. Krawczyk SK, Garrigues M, Bouredoucen H (1986) J Appl Phys 60:392

    Article  CAS  Google Scholar 

  21. Garcia N, Ponizowskaya EV, Zhu HAO, Xiao JOHNQ, Pons A (2003) Appl Phys Lett 82:3147

    Article  CAS  Google Scholar 

  22. Thompson DW, Snyder PG, Castro L, Yan LI, Kaipa P, Woollam JA (2005) J Appl Phys 97:113511

    Article  Google Scholar 

  23. Chang RR, Iyer R, Lile DL (1987) J Appl Phys 61:1995

    Article  CAS  Google Scholar 

  24. Imothy T, Gfroer H (2000) Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester, p 9209

    Google Scholar 

  25. Chen W, Tang HG, Shi CS, Dang J, Shi JY, Zhou YX, Xia SD, Wang YX, Yin ST (1995) Appl Phys Lett 67:317

    Article  CAS  Google Scholar 

  26. Draege BG, Summers GP (1979) Phys Rev B 19:1172

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FANEDD of China No.200525, Natural Science Foundation of Hubei Province No. 2005ABA027 and Science & Technology Program of Wuhan City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-You Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YF., Tu, YF., Huang, SY. et al. Effect of etch-treatment upon the intensity and peak position of photoluminescence spectra for anodic alumina films with ordered nanopore array. J Mater Sci 44, 3370–3375 (2009). https://doi.org/10.1007/s10853-009-3440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3440-9

Keywords

Navigation