Skip to main content
Log in

Microstructural characterization of nanocrystalline nickel produced by surface mechanical attrition treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By means of surface mechanical attrition treatment (SMAT), nanocrystalline surface layers are produced in pure Ni plates. The average crystallite size, root mean square (r.m.s.) microstrain, dislocation density, and stored elastic energy are determined by X-ray diffraction (XRD) line profile analysis. The average crystallite size obtained by XRD is compared with the grain size observed from transmission electron microscopy (TEM) image. The high-resolution TEM (HRTEM) micrograph confirms the presence of high density of dislocations obtained by XRD, and reveals that most of dislocations distribute at the subgrain boundaries with few inside the subgrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  2. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589. doi:https://doi.org/10.1016/j.actamat.2004.06.017

    Article  CAS  Google Scholar 

  3. Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi:https://doi.org/10.1007/s10853-008-2624-z

    Article  CAS  Google Scholar 

  4. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi:https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  5. Lu K, Lu J (1999) J Mater Sci Technol 15:193

    Article  CAS  Google Scholar 

  6. Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Acta Mater 51:1871. doi:https://doi.org/10.1016/S1359-6454(02)00594-3

    Article  CAS  Google Scholar 

  7. Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) Acta Mater 50:4603. doi:https://doi.org/10.1016/S1359-6454(02)00310-5

    Article  CAS  Google Scholar 

  8. Wang K, Tao NR, Liu G, Lu J, Lu K (2006) Acta Mater 54:5281. doi:https://doi.org/10.1016/j.actamat.2006.07.013

    Article  CAS  Google Scholar 

  9. Wen CS, Chen Z, Huang BX, Rong YH (2006) Metall Mater Trans A 37:1413. doi:https://doi.org/10.1007/s11661-006-0086-y

    Article  Google Scholar 

  10. Neishi K, Horita Z, Langdon TG (2002) Mater Sci Eng A 325:54. doi:https://doi.org/10.1016/S0921-5093(01)01404-6

    Article  Google Scholar 

  11. Zhilyaev AP, Nurislamova GV, Baro MD, Valiev RZ, Langdon TG (2002) Metall Mater Trans A 33:1865. doi:https://doi.org/10.1007/s11661-002-0197-z

    Article  Google Scholar 

  12. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753. doi:https://doi.org/10.1016/S1359-6462(01)00955-1

    Article  CAS  Google Scholar 

  13. Zhilyaev AP, Gubicza J, Nurislamova GV, Revesz A, Surinach S, Baro MD, Ungar T (2003) Phys Status Solidi A 198:263. doi:https://doi.org/10.1002/pssa.200306608

    Article  CAS  Google Scholar 

  14. Stokes AR (1948) Proc Phys Soc 61:382. doi:https://doi.org/10.1088/0959-5309/61/4/311

    Article  CAS  Google Scholar 

  15. Warren BE, Averbach BL (1950) J Appl Phys 21:595. doi:https://doi.org/10.1063/1.1699713

    Article  CAS  Google Scholar 

  16. Wilkens M (1970) Phys Status Solidi A 2:359. doi:https://doi.org/10.1002/pssa.19700020224

    Article  Google Scholar 

  17. Langford JI (1978) J Appl Cryst 11:10. doi:https://doi.org/10.1107/S0021889878012601

    Article  CAS  Google Scholar 

  18. Wang YM, Lee SS, Lee YC (1982) J Appl Cryst 15:35. doi:https://doi.org/10.1107/S0021889882011315

    Article  Google Scholar 

  19. Zwui S, Chen G, Wang YM (1985) J Mater Sci Lett 4:1434. doi:https://doi.org/10.1007/BF00721356

    Article  CAS  Google Scholar 

  20. Mignot J, Rondot D (1977) Acta Cryst A 33:327. doi:https://doi.org/10.1107/S0567739477000795

    Article  Google Scholar 

  21. Ungar T (2007) J Mater Sci 42:1584. doi:https://doi.org/10.1007/s10853-006-0696-1

    Article  CAS  Google Scholar 

  22. Ungar T, Tichy G, Gubicza J, Hellmig RJ (2005) Powder Diffr 20:366. doi:https://doi.org/10.1154/1.2135313

    Article  CAS  Google Scholar 

  23. Hughes DA, Hansen N (2000) Acta Mater 48:2985. doi:https://doi.org/10.1016/S1359-6454(00)00082-3

    Article  CAS  Google Scholar 

  24. Li W, Wang XD, Meng QP, Rong YH (2008) Scripta Mater 59:344. doi:https://doi.org/10.1016/j.scriptamat.2008.04.001

    Article  CAS  Google Scholar 

  25. Zhu YT, Huang JY, Gubicza J, Ungar T, Ma E, Valiev RZ (2003) J Mater Res 18:1908. doi:https://doi.org/10.1557/JMR.2003.0267

    Article  CAS  Google Scholar 

  26. Li W, Xu WZ, Wang XD, Rong YH (2009) J Alloys Compd 474:546. doi:https://doi.org/10.1016/j.jallcom.2008.06.136

    Article  CAS  Google Scholar 

  27. Baretzky B, Baro MD, Grabovetskaya GP, Gubicza J et al (2005) Rev Adv Mater Sci 9:45

    CAS  Google Scholar 

  28. Lu K, Lu J (2004) Mater Sci Eng A 375–377:38. doi:https://doi.org/10.1016/j.msea.2003.10.261

    Article  Google Scholar 

  29. Carter CB, Holmes SM (1977) Philos Mag 35:1161. doi:https://doi.org/10.1080/14786437708232942

    Article  CAS  Google Scholar 

  30. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654. doi:https://doi.org/10.1126/science.1098741

    Article  CAS  Google Scholar 

  31. Zhu YT, Langdon TG (2005) Mater Sci Eng A 409:234. doi:https://doi.org/10.1016/j.msea.2005.05.111

    Article  Google Scholar 

Download references

Acknowledgement

The present work was financially supported by the National Natural Science Foundation of China under Grant No. 50871069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Liu, P., Ma, F. et al. Microstructural characterization of nanocrystalline nickel produced by surface mechanical attrition treatment. J Mater Sci 44, 2925–2930 (2009). https://doi.org/10.1007/s10853-009-3386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3386-y

Keywords

Navigation