Skip to main content
Log in

Nanocrystalline alumina dispersed in nanocrystalline nickel: enhanced mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nickel–alumina nano-composites have been electrochemically deposited by pulse plating from a suspension of nano-Al2O3 in a Watts-type electrolyte. The influence of duty cycle and amount of suspended Al2O3 on the content of Al2O3 in the deposit was studied. With an optimized set of plating parameters, the influences of additives on wear resistance, hardness and the deformation behaviour (quasistatic and dynamic compression tests) of these nickel–alumina nano-composites in comparison to pure nano-nickel were investigated. The addition of Al2O3 tripled the yield stress and improved the hardness up to twice the value of pure nickel. Due to its high hardness and stiffness, the nickel–alumina composites deposited with the additive naphthalene-1,3,6-trisulfonic acid trisodium salt in the electrolyte are appropriate to wear resistant coating. Nickel–alumina nano-composites deposited without any additives are hard and at the same time ductile and so considered as ideal structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sinha PK, Dhananjayan N, Chakrabarti HK (1973) Plat 60:55

    CAS  Google Scholar 

  2. Bahrololoom ME, Sani R (2005) Surf Coat Technol 192:154

    Article  CAS  Google Scholar 

  3. Muller B, Ferkel H (2000) Mater Sci Forum 343–346:476

    Article  Google Scholar 

  4. Benea L (1999) Mater Manuf Processes 14:231

    Article  CAS  Google Scholar 

  5. Gay PA, Bercot P, Pagetti J (2001) Surf Coat Technol 140:147

    Article  CAS  Google Scholar 

  6. Moller A, Hahn H (1999) Nanostruct Mater 12:259

    Article  Google Scholar 

  7. Joshi MN, Totalani M (1979) J Electrochem Soc India 28:35

    Google Scholar 

  8. Babu GNKR, Muralidharan VS, Vasu KI (1991) Plat and Surf Finish 78:126

    CAS  Google Scholar 

  9. Medeliene V, Juskenas R, Kurtinaitiene M et al (2004) Pol J Chem 78:1305

    CAS  Google Scholar 

  10. Kaisheva M, Fransaer J (2004) J Electrochem Soc 151:C89

    Article  CAS  Google Scholar 

  11. Ibrahim KM, Aal AA, Hamid ZA (2005) Int J Cast Met Res 18:315

    Article  CAS  Google Scholar 

  12. Hu F, Chan KC (2004) Appl Surf Sci 233:163

    Article  CAS  Google Scholar 

  13. Surender M, Balasubramaniam R, Basu B (2004) Surf Coat Technol 187:93

    Article  CAS  Google Scholar 

  14. Stroumbouli M, Gyftou P, Pavlatou EA et al (2005) Surf Coat Technol 195:325

    Article  CAS  Google Scholar 

  15. Surender M, Basu B, Balasubramaniam R (2004) Advances in surface treatment: research & applications (ASTRA). Proceedings of the international conference, Hyderabad, India, Nov 3–6, 2003, p 130

  16. Endrino JL, Nainaparampil JJ, Krzanowski JE (2002) Surf Coat Technol 157:95

    Article  CAS  Google Scholar 

  17. Eroglu S, Gallois B (1995) J Mater Sci 30:1754. doi:https://doi.org/10.1007/BF00351606

    Article  CAS  Google Scholar 

  18. AbiAkar H, Riley C, Maybee G (1996) Chem Mater 8:2601

    Article  CAS  Google Scholar 

  19. Helle K, Walsh F (1997) Trans Inst Met Finish 75:53

    Article  CAS  Google Scholar 

  20. Lee EC, Moon IT (2002) Plat Surf Finish 89:55

    Google Scholar 

  21. Szeptycka B, Gajewska-Midzialek A (2007) Rev Adv Mater Sci 14:135

    CAS  Google Scholar 

  22. Tang NK, Zhao WZ (2007) Surf Eng 23:157

    Article  CAS  Google Scholar 

  23. Wang F, Arai S, Endo M (2004) Mater Trans 45:1311

    Article  CAS  Google Scholar 

  24. Chen XH, Chen CS, Xiao HN et al (2005) Surf Coat Technol 191:351

    Article  CAS  Google Scholar 

  25. Chen XH, Cheng FQ, Li SL et al (2002) Surf Coat Technol 155:274

    Article  CAS  Google Scholar 

  26. Guo C, Zuo Y, Zhao XH et al (2007) Surf Coat Technol 201:9491

    Article  CAS  Google Scholar 

  27. Chang YC, Chang YY, Lin CI (1998) Electrochim Acta 43:315

    Article  CAS  Google Scholar 

  28. Chang YY, Lin CI, Chang YC (1997) J Chin Inst Chem Eng 28:245

    CAS  Google Scholar 

  29. Periene N, Cesuniene A, Ramanauskiene D et al (1994) Bull Electrochem 10:486

    CAS  Google Scholar 

  30. Szczygiel B, Kolodziej M (2005) Electrochim Acta 50:4188

    Article  CAS  Google Scholar 

  31. Wang Y, Xu Z (2006) Surf Coat Technol 200:3896

    Article  CAS  Google Scholar 

  32. Leo NT, Chen WP, Xiao ZY et al (2002) Trans Nonferrous Met Soc China 12:886

    Google Scholar 

  33. Dong SR, Tu JP, Zhang XB (2001) Mater Sci Eng A A313:83

    Article  CAS  Google Scholar 

  34. Feng Y, Yuan HL, Zhang M (2005) Mater Charact 55:211

    Article  CAS  Google Scholar 

  35. Schulz P (2007) Verbundwerkstoffe mit Metallmatrix. in “CCG-Seminar WB 6.06: Werkstoffe für neue Schutztechnologien”. Carl-Cranz-Gesellschaft, Freiburg

    Google Scholar 

  36. Lach E (2007) MMC- und C/C-Werkstoffe dynamische und ballistische Eigenschaften, in “CCG-Seminar WB 6.06: Werkstoffe für neue Schutztechnologien”. Carl-Cranz-Gesellschaft, Freiburg

    Google Scholar 

  37. Gupta S, Roy RK, Chowdhury MP et al (2004) Vac 75:111

    Article  CAS  Google Scholar 

  38. Turunen E, Keskinen J, Heczko O et al (2006) Adv Eng Mater 8:669

    Article  CAS  Google Scholar 

  39. Hannula SP, Turunen E, Keskinen J et al (2006) Sci Eng Ceram 317–318:539

    Google Scholar 

  40. Krueger HG, Knote A, Schindler U et al (2004) J Mater Sci 39:839. doi:https://doi.org/10.1023/B:JMSC.0000012912.96350.d2

    Article  CAS  Google Scholar 

  41. Sarkar P, Datta S, Nicholson PS (1997) Ceram Trans 85:231

    CAS  Google Scholar 

  42. Sarkar P, Datta S, Nicholson PS (1997) Composites Part B 28B:49

    Article  CAS  Google Scholar 

  43. Ehrhardt J (1983) Oberfl-Surf 24:338

    CAS  Google Scholar 

  44. Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186

    Article  CAS  Google Scholar 

  45. Natter H, Hempelmann R (2003) Electrochim Acta 49:51

    Article  CAS  Google Scholar 

  46. Withers JC (1962) Prod Finish 26:62

    CAS  Google Scholar 

  47. Vereecken PM, Shao I, Searson PC (2000) J Electrochem Soc 147:2572

    Article  CAS  Google Scholar 

  48. O’Brien DJ, Martin PW, Williams RV (1966) Appl Mater Res 5:241

    Google Scholar 

  49. Brandes EA, Goldthorpe D (1967) Metalurgia (Bucharest) 76:195

    CAS  Google Scholar 

  50. Guglielmi N (1972) J Electrochem Soc 119:1009

    Article  CAS  Google Scholar 

  51. Celis JP, Roos JR, Buelens C (1987) J Electrochem Soc 134:1402

    Article  CAS  Google Scholar 

  52. Hornbogen E (1985) Czech J Phys B 35:193

    Article  Google Scholar 

  53. Georgiev G, Kamenova I, Georgieva V et al (2006) Godishnik na Sofiiskiya Universitet 98–99:159

    Google Scholar 

  54. Gladman T (1999) Mater Sci Technol 15:30

    Article  CAS  Google Scholar 

  55. Orowan E (1948) Symposium on internal stresses in metals and alloys. Institute of Metals, London, p 451

    Google Scholar 

  56. Nembach E (1997) Particle strengthening of metals and alloys. John Wiley and Sons, New York

    Google Scholar 

  57. Chruschtchow MM (1957) Proc Conf Lub Wear, p 655

  58. Lach E, Radjaimia A, Leitner H et al (2006) J Phys IV Proc 134:839

    CAS  Google Scholar 

  59. Fischer H (1954) Elektrolytische Abscheidung und Elektrokristallisation von Metallen

    Book  Google Scholar 

  60. Lichtenberger A, Gazeaud G, Lach E (1988) In Dymat 88, Ajaccio

Download references

Acknowledgements

We gratefully acknowledge the helpful discussions we had with Prof. Horst Vehoff. We thank Sylvia Kuhn for the help with electron micrographs, and Axel Bohmann for the help with the SHPB-measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Natter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, A., Natter, H., Hempelmann, R. et al. Nanocrystalline alumina dispersed in nanocrystalline nickel: enhanced mechanical properties. J Mater Sci 44, 2725–2735 (2009). https://doi.org/10.1007/s10853-009-3330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3330-1

Keywords

Navigation