Skip to main content
Log in

Enhancement of fiber–matrix adhesion by laser ablation-induced surface microcorrugation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micrometer-sized surface corrugations produced on Kevlar fiber surfaces by laser ablation were found to dramatically enhance the mechanical adhesion between the fibers and the epoxy matrix in a fiber-reinforced composite. Symmetric and asymmetric corrugation structures were produced by irradiating the fibers with high-fluence UV laser pulses at various incidence angles. The interfacial shear strength (IFSS) between the fibers and the matrix was measured using the microbond fiber-pullout method. Upon laser ablation treatment, the IFSS increased by 120% with symmetric corrugation profiles obtained with laser irradiation normal to the fiber axis, and 5-fold with asymmetric corrugation profiles obtained with the laser incidence angle at 45° to the fiber axis. A similar enhancement was observed in pullout tests under wet conditions. A simple model based on an elementary analysis of the expected strain field in the presence of interface corrugation is found to provide a quantitative explanation of the observed strength enhancement factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Equation 2, solved for \( s_{\bot} \), may be interpreted as the power series expansion of the exact (but unknown) dependence of the normal interface strength \( s_{\bot } \) on the applied shear stress \( s_{\parallel } \) up to second order in \( s_{\parallel } \). Since a reversal of the sign of \( s_{\parallel } \) should have no effect on the perpendicular strength, \( s_{\bot } \) is an even function of \( s_{\parallel } \), i.e., the linear term in the power series expansion vanishes.

References

  1. King JA, Buttry DA, Adams DF (1993) Polym Compos 14:301. doi:https://doi.org/10.1002/pc.750140405

    Article  CAS  Google Scholar 

  2. Manchado MAL, Arroyo M, Bagiotti J, Kenny JM (2003) J Appl Polym Sci 90:2170. doi:https://doi.org/10.1002/app.12866

    Article  CAS  Google Scholar 

  3. Xu Z, Huang Y, Zhang C, Liu L, Zhang Y, Wang L (2007) Compos Sci Technol 67:3261

    Article  CAS  Google Scholar 

  4. Song Q, Netravali AN (1998) J Adhes Sci Technol 12:957. doi:https://doi.org/10.1163/156856198X00579

    Article  CAS  Google Scholar 

  5. Song Q, Netravali AN (1999) J Adhes Sci Technol 13:501. doi:https://doi.org/10.1163/156856199X00064

    Article  CAS  Google Scholar 

  6. Tastani SP, Pantazopoulou SJ (2002) In: Bond in concrete—from research to standards, Publication of CEB-FIP, ACI and JCI, Budapest, Hungary, November 2002, pp 1–8

  7. Ebert EA (1992) US Patent 5127413

  8. Zhou XF, Nairn JA, Wagner HD (1999) Composites Part A 30:1387. doi:https://doi.org/10.1016/S1359-835X(99)00043-3

    Article  Google Scholar 

  9. Tsukamoto Y, Kuroda H, Sato A, Yamaguchi H (1992) Thin Solid Films Switz 213:220. doi:https://doi.org/10.1016/0040-6090(92)90285-J

    Article  CAS  Google Scholar 

  10. Mandell JF, Chen JH, McGarry FJ (1980) Int J Adhes Adhes 1:40. doi:https://doi.org/10.1016/0143-7496(80)90033-0

    Article  CAS  Google Scholar 

  11. Miller B, Muri P, Rebenfeld L (1987) Compos Sci Technol 28:17. doi:https://doi.org/10.1016/0266-3538(87)90059-5

    Article  CAS  Google Scholar 

  12. Herrera-Franco PJ, Drzal LT (1992) Composites 23:2. doi:https://doi.org/10.1016/0010-4361(92)90282-Y

    Article  CAS  Google Scholar 

  13. Miller B, Gaur U (1989) J Adhes 29:103. doi:https://doi.org/10.1080/00218468908026480

    Article  CAS  Google Scholar 

  14. Murthy NS, Prabhu RD, Martin JJ, Zhou L, Headrick RL (2006) J Appl Phys 100(023538):1

    Google Scholar 

  15. Bahners T, Schollmeyer E (1989) J Appl Phys 66:1884. doi:https://doi.org/10.1063/1.344371

    Article  Google Scholar 

  16. Moore A, Koch M, Mueller K, Stuke M (2003) Appl Phys A 77:353. doi:https://doi.org/10.1007/s00339-003-2193-6

    Article  CAS  Google Scholar 

  17. Yip J, Chan K, Sin KM, Lau KS (2004) Polym Int 53:627. doi:https://doi.org/10.1002/pi.1420

    Article  CAS  Google Scholar 

  18. Hsueh CH (1992) Mater Sci Eng A 154:125. doi:https://doi.org/10.1016/0921-5093(92)90337-Z

    Article  Google Scholar 

  19. Yue CY, Cheng WL (1992) J Mater Sci 27:3173. doi:https://doi.org/10.1007/BF01116007

    Article  CAS  Google Scholar 

  20. Zhou LM, Kim JK, Mai YW (1992) Compos Sci Technol 45:153. doi:https://doi.org/10.1016/0266-3538(92)90037-4

    Article  CAS  Google Scholar 

  21. Kim RY, Soni SR (1986) In: Kawata K, Umekawa S, Kobayashi A (eds) Composites ’86: recent advances in Japan and the United States, Proc. Japan-U.S. CCM-III, Tokyo, pp 341–350

  22. Brewer JC, Lagace PA (1988) J Compos Mater 22:1141. doi:https://doi.org/10.1177/002199838802201205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Y. Kamath for helpful discussions on the experimental aspect of the pullout tests and R. Govinthasamy for preliminary work on this project. The study was funded by the National Science Foundation under award # DMR-0513926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sanjeeva Murthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bédoui, F., Murthy, N.S. & Zimmermann, F.M. Enhancement of fiber–matrix adhesion by laser ablation-induced surface microcorrugation. J Mater Sci 43, 5585–5590 (2008). https://doi.org/10.1007/s10853-008-2805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2805-9

Keywords

Navigation