Skip to main content
Log in

Effect of the presence of excess ammonium ions on the clay surface on permeation properties of epoxy nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Epoxy nanocomposites with commercially and self-modified montmorillonites of different cation exchange capacities carrying ammonium modifications of various chemical architectures were synthesized using solution casting approach. The commercially treated montmorillonites were observed to contain a large excess of unbound ammonium ions on the surface, which had a negative impact on the permeation properties of the composites owing to the suspected interactions of these unbound ammonium ions with the epoxy polymer. The permeation behavior was significantly improved when self-modified clays free of any excess ammonium modification were used. The microstructure development was unaffected by the physical state of the clay surface indicating that the potential changes in the polymer properties at the interface as well as interfacial interactions in the composites carrying the commercially modified clays may have led to increase in the free volume. Optimal preparation of the clay surface holds the key to achieve enhancement in the composite performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T et al (1993) J Mater Res 8:1179. doi:https://doi.org/10.1557/JMR.1993.1179

    Article  CAS  Google Scholar 

  2. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1174. doi:https://doi.org/10.1557/JMR.1993.1174

    Article  CAS  Google Scholar 

  3. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci Part Polym Chem 32:983. doi:https://doi.org/10.1002/pola.1993.080310418

    Article  Google Scholar 

  4. Bailey SW (1984) In: Bailey SW (ed) Reviews in mineralogy. Virginia Polytechnic Institute and State University, Blacksburg, VA

    Google Scholar 

  5. Bailey SW (1980) In: Brindley GW, Brown G (eds) Crystal structure of clay minerals and their x-ray identification. Mineralogical Society, London

    Google Scholar 

  6. Theng BKG (1974) The chemistry of clay-organic reactions. Adam Hilger, London

    Google Scholar 

  7. Lagaly G, Beneke K (1991) Colloid Polym Sci 269:1198. doi:https://doi.org/10.1007/BF00652529

    Article  CAS  Google Scholar 

  8. Giannelis EP (1996) Adv Mater 8:29. doi:https://doi.org/10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  9. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP et al (2000) Chem Mater 12:1866. doi:https://doi.org/10.1021/cm0001760

    Article  CAS  Google Scholar 

  10. LeBaron PC, Wang Z, Pinavaia TJ (1999) Appl Clay Sci 15:11. doi:https://doi.org/10.1016/S0169-1317(99)00017-4

    Article  CAS  Google Scholar 

  11. Alexandre M, Dubois P (2000) Mater Sci Eng Rep 28:1. doi:https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  12. Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Macromolecules 36:9851. doi:https://doi.org/10.1021/ma035077x

    Article  CAS  Google Scholar 

  13. May CA (1988) Epoxy resins chemistry and technology, 2nd edn. Dekker, New York

    Google Scholar 

  14. Lee H, Neville K (1967) Handbook of epoxy resins. McGraw-Hill, New York

    Google Scholar 

  15. Ellis B (1993) Chemistry and technology of epoxy resins. Blackie Academic & Professional, London

    Book  Google Scholar 

  16. Messersmith PB, Giannelis EP (1994) Chem Mater 6:1719. doi:https://doi.org/10.1021/cm00046a026

    Article  CAS  Google Scholar 

  17. Lan T, Kaviratna PD, Pinnavaia TJ (1995) Chem Mater 7:2144. doi:https://doi.org/10.1021/cm00059a023

    Article  CAS  Google Scholar 

  18. Zilg C, Mulhaupt R, Finter J (1999) Macromol Chem Phys 200:661. doi:10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4

    Article  CAS  Google Scholar 

  19. Brown JM, Curliss D, Vaia RA (2000) Chem Mater 12:3376. doi:https://doi.org/10.1021/cm000477+

    Article  CAS  Google Scholar 

  20. Zerda AS, Lesser AJ (2001) J Polym Sci Part B Polym Phys 39:1137. doi:https://doi.org/10.1002/polb.1090

    Article  CAS  Google Scholar 

  21. Kornmann X, Lindberg H, Berglund LA (2001) Polymer (Guildf) 42:1303. doi:https://doi.org/10.1016/S0032-3861(00)00346-3

    Article  CAS  Google Scholar 

  22. Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund L (2002) J Appl Polym Sci 86:2643. doi:https://doi.org/10.1002/app.11279

    Article  CAS  Google Scholar 

  23. Kong D, Park CE (2003) Chem Mater 15:419. doi:https://doi.org/10.1021/cm0205837

    Article  CAS  Google Scholar 

  24. Chin IJ, Thurn-Albrecht T, Kim HC, Russell TP, Wang J (2001) Polymer (Guildf) 42:5947. doi:https://doi.org/10.1016/S0032-3861(00)00898-3

    Article  CAS  Google Scholar 

  25. Osman MA, Atallah A, Suter UW (2004) Polymer (Guildf) 45:1177. doi:https://doi.org/10.1016/j.polymer.2003.12.020

    Article  CAS  Google Scholar 

  26. Morgan AB, Harris JD (2003) Polymer (Guildf) 44:2313. doi:https://doi.org/10.1016/S0032-3861(03)00095-8

    Article  CAS  Google Scholar 

  27. Kadar F, Szazdi L, Fekete E, Pukanszky B (2006) Langmuir 22:7848. doi:https://doi.org/10.1021/la060144c

    Article  CAS  Google Scholar 

  28. Osman MA, Ploetze M, Suter UW (2003) J Mater Chem 13:2359. doi:https://doi.org/10.1039/b302331a

    Article  CAS  Google Scholar 

  29. Osman MA, Mittal V, Morbidelli M, Suter UW (2004) Macromolecules 37:7250. doi:https://doi.org/10.1021/ma048798k

    Article  CAS  Google Scholar 

  30. Osman MA, Ploetze M, Skrabal P (2004) J Phys Chem B 108:2580. doi:https://doi.org/10.1021/jp0366769

    Article  CAS  Google Scholar 

  31. Osman MA, Mittal V, Suter UW (2007) Macromol Chem Phys 208:68. doi:https://doi.org/10.1002/macp.200600444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, V. Effect of the presence of excess ammonium ions on the clay surface on permeation properties of epoxy nanocomposites. J Mater Sci 43, 4972–4978 (2008). https://doi.org/10.1007/s10853-008-2732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2732-9

Keywords

Navigation