Skip to main content
Log in

High thermal stability PS-b-PEO templated mesoporous titania film

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For many advanced applications, high thermal stability above 400 °C remains as a challenge for the ordered mesoporous titania films. In this work, we attempt to increase the thermal stability of mesoporous structure in titania film crystallization via PS-b-PEO block copolymer templating route. This paper reports the highly crystallized mesoporous titania film on silicon substrate thermally stable at 600 °C. The photocatalytic activity of the titania mesoporous film was also shown to be twice of that templated by F127 for degradation of methylene blue (MB). The present results also indicate that at low crystallinity, photocatalytic activity is controlled primarily by crystal perfection rather that surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147. doi:https://doi.org/10.1021/cm960137h

    Article  CAS  Google Scholar 

  2. Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissière C, Antonietti M, Sanchez C (2004) Chem Mater 16:2948. doi:https://doi.org/10.1021/cm0495966

    Article  CAS  Google Scholar 

  3. Wu CW, Ohsuna T, Kuwabara M, Kuroda K (2006) J Am Chem Soc 128:4544. Medline. doi:https://doi.org/10.1021/ja060453p

    Article  CAS  Google Scholar 

  4. Grosso D, Babonneau F, Sanchez C, Soler-Illia GJdeAA, Crepaldi EL (2003) J Sol–Gel Sci Technol 26:561. doi:https://doi.org/10.1023/A:1020715803241

    Article  CAS  Google Scholar 

  5. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Phys Chem 7:4157. doi:https://doi.org/10.1039/b511016e

    CAS  Google Scholar 

  6. Lawrence W, Tejedor-Tejedor MI, Anderson MA (1999) Environ Sci Technol 33:2070. doi:https://doi.org/10.1021/es981328j

    Article  Google Scholar 

  7. Takagi K, Makinoto T, Hiraiwa H, Negishi TJ (2004) Vac Sci Technol A 19:2931. doi:https://doi.org/10.1116/1.1415357

    Article  Google Scholar 

  8. Simon PFW, Ulrich R, Spiess HW, Wiesner U (2001) Chem Mater 13:3464. doi:https://doi.org/10.1021/cm0110674

    Article  CAS  Google Scholar 

  9. Yu K, Bartel C, Eisenberg A (1999) Langmuir 15:7157. doi:https://doi.org/10.1021/la981688k

    Article  CAS  Google Scholar 

  10. Kim DH, Sun Z, Russell TP, Knoll W, Gutmann JS (2005) Adv Funct Mater 15:1160. doi:https://doi.org/10.1002/adfm.200400462

    Article  CAS  Google Scholar 

  11. Zhu L, Huang P, Chen WY, Ge Quirk QRP, Cheng SZD (2002) Macromolecules 35:3553. doi:https://doi.org/10.1021/ma012184n

    Article  CAS  Google Scholar 

  12. Li X, Lau KHA, Kim DH, Knoll W (2005), Langmuir 21:5212. Medline. doi:https://doi.org/10.1021/la046812g

    Article  CAS  Google Scholar 

  13. Liu ZQ, Kim DH, Wu XD, Boosahda L, Stone D, LaRose L, Russell TP (2002) Adv Mater 14:1373. doi:https://doi.org/10.1002/1521-4095(20021002)14:19<1373::AID-ADMA1373>3.0.CO;2-F

    Article  Google Scholar 

  14. Kim SH, Misner MJ, Xu T, Kimura M, Russell TP (2004) Adv Mater 16:226. doi:https://doi.org/10.1002/adma.200304906

    Article  CAS  Google Scholar 

  15. Cheng YJ, Gutmann JS (2006) J Am Chem Soc 128:4658. Medline. doi:https://doi.org/10.1021/ja0562853

    Article  CAS  Google Scholar 

  16. Yusuf MM, Imai H, Hirashima H (2001) J Non-Cryst Solids 285:90. doi:https://doi.org/10.1016/S0022-3093(01)00437-9

    Article  CAS  Google Scholar 

  17. Grosso D, Soller-Illia GJdeAA, Babonneau F, Sanchez C, Albouy PA, Brunet-Brunet A, Ruud Balkenende A (2001) Adv Mater 13:1085. doi:https://doi.org/10.1002/1521-4095(200107)13:14<1085::AID-ADMA1085>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  18. Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia deGJAA, Sanchez C (2006) J Mater Chem 16:77. doi:https://doi.org/10.1039/b512824m

    Article  CAS  Google Scholar 

  19. Grosso D, Soler-Illia GJdeAA, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C (2003) Chem Mater 15:4562. doi:https://doi.org/10.1021/cm031060h

    Article  CAS  Google Scholar 

  20. Zhang Y, Li J, Wang J (2006) Chem Mater 18:2917. doi:https://doi.org/10.1021/cm060450b

    Article  CAS  Google Scholar 

  21. Koganti VR, Dunphy D, Gowrishankar V, McGehee MD, Li X, Wang J, Rankin SE (2006) Nano Lett 6:2567. doi:https://doi.org/10.1021/nl061992v

    Article  CAS  Google Scholar 

  22. Wu CW, Ohsuan T, Kuwabara M, Kuroda K (2006) J Am Chem Soc 128:4544. Medline. doi:https://doi.org/10.1021/ja060453p

    Article  CAS  Google Scholar 

  23. Lakshimi S, Renganathan R, Fujita SJ (1995) Photochem Photobiol A: Chem 88:163. doi:https://doi.org/10.1016/1010-6030(94)04030-6

    Article  Google Scholar 

  24. Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J, Serpone N (2001) J Photochem Photobiol A: Chem 140:163. doi:https://doi.org/10.1016/S1010-6030(01)00398-7

    Article  CAS  Google Scholar 

  25. Segalman RA (2005) Mater Sci Eng Rep 48:191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Ma, J. & Goh, G.K.L. High thermal stability PS-b-PEO templated mesoporous titania film. J Mater Sci 43, 4297–4302 (2008). https://doi.org/10.1007/s10853-008-2627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2627-9

Keywords

Navigation