Skip to main content
Log in

Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the growth of carbon nanotubes (CNTs) by thermal Chemical Vapor Deposition (CVD) and investigate the effects of nitrogen carrier gas flow rates and mixture ratios on the morphology of CNTs on a silicon substrate by vaporizing the camphor/ferrocene mixture at 750 °C in a nitrogen atmosphere. Carbon layers obtained after each CVD growth run of 15 min are characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Growth of CNTs is found to occur on silicon substrates. The SEM micrographs helped better understand the nanotube growth morphology while Raman Spectroscopy was used to detect the presence of nanotubes and also identify their nature vizely semiconducting or metallic, single-walled or multi-walled. Raman Spectra was also useful to estimate the quality of the samples as a ratio of nanotube to non-nanotube content. The length and diameters of the aligned CNTs were found to depend on the pyrolysis temperatures, mixture ratio, and the nitrogen carrier gas flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Chem Phys Lett 303:467

    Article  CAS  Google Scholar 

  3. Journet C, Maser WK, Bernier P, Loiseau A, de la-Chapelle MR, Lefrant S (1997) Nature 388:756

    Article  CAS  Google Scholar 

  4. Thess A (1996) Science 273:483

    Article  CAS  Google Scholar 

  5. Ren ZF, Huang ZP, Wang JH, Siegal MP, Provencio PN (1998) Science 282:1105

    Article  CAS  Google Scholar 

  6. Satishkumar B, Govindaraj A, Rao CNR (1999) Chem Phys Lett 307:158

    Article  CAS  Google Scholar 

  7. Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Chem Phys Lett 303:467

    Article  CAS  Google Scholar 

  8. Kumar M, Ando Y (2003) Chem Phys Lett 374:521

    Article  CAS  Google Scholar 

  9. Huczko A (2002) Appl Phys A 74:617

    Article  CAS  Google Scholar 

  10. Musso S, Fanchini G, Tagliaferro A (2005) Diam Relat Mater 14:784

    Article  CAS  Google Scholar 

  11. Zhu C, Xie Z, Guo K (2004) Diam Relat Mater 13:180

    Article  CAS  Google Scholar 

  12. Tucknott R, Yaliraki SN (2002) Chem Phys 281:455

    Article  CAS  Google Scholar 

  13. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE (1997) Science 275:187

    Article  CAS  Google Scholar 

  14. Li Y, Zhang B, Tao XY, Xu JM, Huang WZ, Luo JH, Li T, Bao Y, Geise HJ (2005) Carbon 43:295

    Article  CAS  Google Scholar 

  15. Tan P, An L, Liu L, Guo Z, Czerw R, Carroll DL, Ajayan PM, Zhang N, Guo H (2002) Phys Rev B 66:245410

    Article  Google Scholar 

  16. Singh C, Shaffer MSP, Windle AH (2003) Carbon 41:359

    Article  CAS  Google Scholar 

  17. Liu L, Qin Y, Guo ZX, Zhu D (2003) Carbon 41:331

    Article  CAS  Google Scholar 

  18. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  19. McCulloch DG, Prawer S, Hoffman A (1994) Phys Rev B 50:5905

    Article  CAS  Google Scholar 

  20. Li W, Zhang H, Wang C, Zhang Y, Xu L, Zhu K, Xie S (1997) Appl Phys Lett 70:2684

    Article  CAS  Google Scholar 

  21. Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Kim WS, Lee YH, Choi WB, Lee NS, Kim JM, Choi YG, Yu SC (1999) Appl Phys Lett 75:172

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Council for Scientific and Industrial Research (CSIR), South Africa (Project No: HGERA2S). The authors are very grateful to Ms. Retha Rossouw of the National Metrology Laboratory for helping with the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Franky Malgas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malgas, G.F., Arendse, C.J., Cele, N.P. et al. Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD. J Mater Sci 43, 1020–1025 (2008). https://doi.org/10.1007/s10853-007-2230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2230-5

Keywords

Navigation