Skip to main content
Log in

High-aspect ratio polymeric pillar arrays formed via electrohydrodynamic patterning

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes a method to increase the aspect ratio of polymeric pillar arrays formed by electrohydrodynamic instabilities. Pillar arrays form spontaneously across a narrow capacitor gap when an electric field is applied normal to a thin, fluidic film. This simple technique is appealing because of its ability to rapidly form arrays of small structures in an inexpensive manner. The columnar structures formed using this technique have low-aspect ratios, which are non-ideal for patterning applications. Theory suggests that stretching the structures post-formation is one of the only ways to increase the aspect ratio of the pillars. We developed a tool to physically stretch these structures to increase their aspect ratio from ∼0.1 to ∼0.5. The capabilities and limits of this stretching technique have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Nature (London) 403(6772):874

    Article  CAS  Google Scholar 

  2. Chou SY, Zhuang L (1999) J Vac Sci Technol B 17(6):3197

    Article  CAS  Google Scholar 

  3. Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2001) Europhys Lett 53(4):518

    Article  CAS  Google Scholar 

  4. Pease LF III, Russel WB (2004) Langmuir 20(3):795

    Article  CAS  Google Scholar 

  5. Dickey MD, Collister E, Raines A, Tsiartas P, Holcombe T, Sreenivasan SV, Bonnecaze RT, Willson CG (2006) Chem Mater 18(8):2043

    Article  CAS  Google Scholar 

  6. Herminghaus S (1999) Phys Rev Lett 83(12):2359

    Article  CAS  Google Scholar 

  7. Pease LF, Russel WB (2003) J Chem Phys 118(8):3790

    Article  CAS  Google Scholar 

  8. Lin Z, Kerle T, Russell TP, Schaeffer E, Steiner U (2002) Macromolecules 35(10):3971

    Article  CAS  Google Scholar 

  9. Pease LF, Russel WB (2002) J Non-Newtonian Fluid Mech 102(2):233

    Article  CAS  Google Scholar 

  10. Verma R, Sharma A, Kargupta K, Bhaumik J (2005) Langmuir 21(8):3710

    Article  CAS  Google Scholar 

  11. Lin Z, Kerle T, Baker SM, Hoagland DA, Schaffer E, Steiner U, Russell TP (2001) J Chem Phys 114(5):2377

    Article  CAS  Google Scholar 

  12. Erle MA, Gillette RD, Dyson DC (1970) Chem Eng J 1(1):97

    Google Scholar 

  13. Plateau J (1873) Experimentale et Theoretique des Liquides

  14. Rayleigh L (1879) Proc R S Lond 29:71

    Article  Google Scholar 

  15. Myshkis AD (1987) Low-gravity fluid mechanics: mathematical theory of capillary phenomena. Springer-Verlag, Berlin, New York, pp xix, 583

    Google Scholar 

  16. Slobozhanin LA, Perales JM (1993) Phys Fluids A: Fluid Dyn 5(6):1305

    Article  CAS  Google Scholar 

  17. Slobozhanin LA, Alexander JID, Resnick AH (1997) Phys Fluids 9(7):1893

    Article  CAS  Google Scholar 

  18. Ramos A, Gonzalez H, Castellanos A (1994) Phys Fluids 6(11):3580

    Article  CAS  Google Scholar 

  19. Sankaran S, Saville DA (1993) Phys Fluids A: Fluid Dyn 5(4):1081

    Article  CAS  Google Scholar 

  20. Klingner A, Buehrle J, Mugele F (2004) Langmuir 20(16):6770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Advanced Materials Research Center, the NSF and Intel for graduate fellowships, and the University of Texas CNM for use of the evaporator used to deposit ITO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Grant Willson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickey, M.D., Raines, A., Collister, E. et al. High-aspect ratio polymeric pillar arrays formed via electrohydrodynamic patterning. J Mater Sci 43, 117–122 (2008). https://doi.org/10.1007/s10853-007-2086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2086-8

Keywords

Navigation