Skip to main content
Log in

The structural efficiency of orthotropic stalks, stems and tubes

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An optimised structure is one which uses the smallest quantity of the best material to perform its function, with adequate safety factor or margin for error. Structural optimisation occurs not only in mechanical engineering, but also in nature: plants with hollow stems or stalks gain a height advantage, and are thus more efficient, by approaching the optimum shape. Here we consider the optimisation of orthotropic tubes, typifying, in a mechanical sense, stalk and stem. The stiffness and strength of orthotropic tubes of initially circular section are reviewed, and diagrams are proposed which allow the optimum section shape to be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Yang ZF (1996) J Comp Mat 30:800

    CAS  Google Scholar 

  2. Arce-Villalobos OA (1993) Fundamentals of the design of bamboo structures. PhD Thesis, Eindhoven University of Technology, Netherlands

  3. Niklas KJ (1989) Am J Bot 76:521

    Article  Google Scholar 

  4. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  5. Niklas KJ (1995) Ann Bot 75:133

    Article  Google Scholar 

  6. Niklas KJ (1997a) Ann Bot 80:275

    Article  Google Scholar 

  7. Niklas KJ (1997b) Ann Bot 80:437

    Article  Google Scholar 

  8. Niklas KJ (1998) Ann Bot 81:11

    Article  Google Scholar 

  9. Spatz HC, Speck T, Vogellehner D (1990) Bot Acta 103:123

    Google Scholar 

  10. Spatz HC, Boomgaarden C, Speck T (1993) Bot Acta 106:254

    Google Scholar 

  11. Spatz HC, Speck T (1994) Biomimetics 2:149

    Google Scholar 

  12. Spatz HC, Kohler L, Speck T (1998) Am J Bot 85:305

    Article  Google Scholar 

  13. Speck T, Speck O, Emanns A, Spatz HC (1998) Bot Acta 111:366

    Google Scholar 

  14. Schulgasser K, Witztum A (1997) Ann Bot 80:35

    Article  Google Scholar 

  15. Cecchini LS, Weaver PM (2002) AIAA J 40:2136

    Google Scholar 

  16. Corona E, Rodrigues A (1995) Comp Eng 5:163

    Article  Google Scholar 

  17. Fabian O (1977) Int J Sol Struct 13:1257

    Article  Google Scholar 

  18. Gerard G (1968) Minimum weight design of compressive structures. New York University Press/Interscience, New York

    Google Scholar 

  19. Harursampath D, Hodges DH (1999) Int J Non-Linear Mech 34:1003

    Article  Google Scholar 

  20. Kedward KT (1978) In: Proceedings of the 2nd international conference on composite materials (ICCM/2). Met Soc of AIME p 353

  21. Libai A, Bert CW (1994a) Int J Sol Struct 31:1003

    Article  Google Scholar 

  22. Libai A, Bert CW (1994b) Int J Sol Struct 31:1019

    Article  Google Scholar 

  23. NASA (1968) Space vehicles design criteria (structures)—buckling of thin-walled circular cylinders. Technical Report NASA SP-8007, NASA

  24. Tatting BF, Gürdal Z, Vasiliev VV (1996) AIAA J 34:1934

    Google Scholar 

  25. Tatting BF, Gürdal Z, Vasiliev VV (1997) Int J Solids Struct 34:1419

    Article  Google Scholar 

  26. Tsai SW, Wu EM (1971) J Comp Mater 5:58

    Article  Google Scholar 

  27. Schulgasser K, Witztum A (1992) J Theor Biol 155:497

    Article  Google Scholar 

  28. Brazier LG (1927) Proc Roy Soc Lond A 116:104

    Article  Google Scholar 

  29. Calladine CR (1983) Theory of shell structures. Cambridge University Press, Cambridge

    Google Scholar 

  30. Ghavami K (1990) In: Ramanuja Rao I, Gnanaharan R, Sastry C (eds) Proceedings of the international bamboo workshop held in Cochin, India, 14–18 November. The Kerala Forest Research Institute, India and International Development Research Centre, Canada, p 235

  31. Li S, Fu S, Zeng Q, Zhao X, Zhou B (1994) Biomimetics 2:15

    Google Scholar 

  32. Oda J (1980) Trans Japan Soc Mech Eng Ser A 46:997

    Google Scholar 

  33. Ueda K (1980) Res Bull Coll Exp For Hokkaido University 37:817

    Google Scholar 

  34. Akselrad EL (1965) Izv Akad Nauk USSR, Otdelenie Teknicheskikh Nauk Mech No 4:123

    Google Scholar 

  35. Seide P, Weingarten V (1961) J Appl Mech 28:112

    Google Scholar 

  36. Suo Z (1990a) J Appl Mech 57:627

    Google Scholar 

  37. Suo Z (1990b) Proc R Soc Lond A 427:331

    Article  CAS  Google Scholar 

  38. Wegst UGK, Ashby MF (2004) Phil Mag 84:2167

    Article  CAS  Google Scholar 

  39. Karam GN, Gibson JL (1995a) Int J Sol Struct 32:1259

    Article  Google Scholar 

  40. Karam GN, Gibson JL (1995b) Int J Sol Struct 32:1285

    Article  Google Scholar 

  41. Young WC (1989) Roark’s formulas for stress and strain, 6th edn. McGraw-Hill, London

    Google Scholar 

  42. Mosbrugger V (1990) The tree habit in land plants. Lecture notes in Earth Sciences: 28. Springer, Berlin

  43. Liese W (1985) Bamboos: biology, silvics, properties, utilization (Schriftenreihe der GTZ, Nr. 180, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Dag-Hammerskjöld-Weg 1+2, D-65760 Eschborn, Germany)

Download references

Acknowledgements

The ideas presented here have been helped by discussions with numerous colleagues and associates. We particularly wish to acknowledge the inputs and suggestions of Prof. C.R. Calladine, Dr. H. R. Shercliff, Dr. P. M. Weaver and of an anonymous reviewer. We also wish to acknowledge the support of the Royal Society of London and the US Advance Research Project Agency through the University Research Initiative under Office of Naval Research Contract No. N-00014092-J-1808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike G. K. Wegst.

Appendices

Appendix 1 full solution for ϕA

The transition from fracture/yield to splitting is found by equating the respective moments of failure at A:

$$ \phi_A =\frac{A}{2}\pm \left(\frac{A^{2}}{4}-B\right)^{1/2} $$
(A1)

with

$$ A=\left[\frac{1+2.037\cdot \left(\frac{E_{||}}{E_\bot}\right) \left(\frac{\sigma_{t\bot}}{\sigma_{c||}}\right)^{2}}{1.259\cdot \left(\frac{\sigma_{t\bot}}{E_\bot}\right)^{2} \left(\frac{E_{||}\sigma_{t\bot}}{\sigma_{c||}^2}\right)}\right]\quad \hbox{and B}=\left(\frac{1}{1.236}\right)^{2} \left(\frac{E_\bot}{\sigma_{t\bot}}\right)^{2} $$

Appendix 2 failure through inadequate stiffness

The final criterion for the macroscopical mechanical performance is that of stiffness. Mosbrugger [42] classifies plants according to their structural behaviour: either the plant is a ’flexibility strategist’ and reduces external loads by bending or it is a ’stability strategist’ and has a structure which is stiff and strong enough to withstand the loads without much bending. As the principal load is that due to wind and the velocity of wind increases with height above ground, a flexible tree which bends in a strong wind reduces the moment arm of the net wind force, especially if elastic deformation of its crown reduces its down-wind profile. Tree trunks are frequently stability strategists, whereas their branches must be capable of bending to a quarter-circle. The curvature of the bamboo culm, C, can then be expressed as a function of the length, l, of the stem

$$ C=\frac{1}{R}\approx \frac{\pi}{21} $$
(A2)

Substituting this expression for C in Eq. 8 and inserting the result for c in Eq. 13b gives the bending moment, M, which bends the stem into a quarter-circle

$$ M=\frac{\sqrt{\pi}}{4\sqrt{2}} \left(\frac{r}{l}\right) A^{3/2} \phi^{1/2} E_{||} \left[1-\frac{3\pi^{2}}{8} \left(\frac{r}{l}\right)^{2} \phi^{2} \left(\frac{E_{||}}{E_\bot}\right)\right] $$
(A3)

The second expression in the square bracket is very small due to the high slenderness ratios of bamboo (ϕ = l/r = 550−1000, [43]) and may therefore be neglected. The moment which bends a stem to a quarter-circle may therefore be rewritten as

$$ M_4 =\frac{\sqrt{\pi}}{4\sqrt{2}} \left(\frac{r}{l}\right) A^{3/2} \phi^{1/2}E_{||} $$
(A4)

If the plant is to function as a flexibility strategist, it must be able to do this without failing by any of the other three mechanisms analysed above.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegst, U.G.K., Ashby, M.F. The structural efficiency of orthotropic stalks, stems and tubes. J Mater Sci 42, 9005–9014 (2007). https://doi.org/10.1007/s10853-007-1936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1936-8

Keywords

Navigation