Skip to main content
Log in

Atomistic-mesoscale coupled mechanical analysis of polymeric nanofibers

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Theoretical analysis of Poly-(l)-Lactic Acid (PLLA) nanofibers is a necessary step towards designing novel biomedical applications. This paper aims to analyze the mechanical properties of PLLA nanofibers so that optimal scaffolds in tissue engineering applications can be developed. We carry out analysis of PLLA nanofibers to estimate the mechanical properties from basic building blocks to the nanofibrous structures. A single PLLA nanofiber is made up of Shish–Kebab like fibrils intertwined together and can contain both amorphous and crystalline phases. The elastic modulus of the Lactic acid monomeric formation in the crystalline phase is derived using second-derivative of the strain energy using molecular dynamics simulation. The mechanical property of the Shish–Kebab fibril is derived by homogenization. The fiber modulus is then obtained using the Northolt and van der Hout’s continuous chain theory. One of the significant contributions in this paper is the use of modified continuous chain theory, where a combined multiscale approach is used in the estimation of the mechanical properties of PLLA nanofibers. The theoretical results correlate well with reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208

    Article  CAS  Google Scholar 

  2. Lim TC, Kotaki M, Yong TKJ, Yang F, Fujihara K, Ramakrishna S (2004) Mater Technol (Nano Bio-engineering Special) 19:20

    CAS  Google Scholar 

  3. Lim TC, Ramakrishna S (2005) In: Next-generation applications for polymeric nanofibres. John Wiley, England, p 137

  4. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma ZW (2005) In: An introduction to electrospinning and nanofibers. World Scientific, Singapore

  5. Ramakrishna S, Fujihara K, Ganesh VK, Teo WE, Lim TC (2005) In: Science and engineering of polymer nanofibers. American Scientific Publisher, California

  6. Zammaretti P, Jaconi M (2004) Curr Opin Biotechnol 15:430

    Article  CAS  Google Scholar 

  7. Tan EPS, Lim CT (2006) J Biomed Mat Res— Part A 77A:526

    Article  CAS  Google Scholar 

  8. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Bio/Technology 12:689

    Article  CAS  Google Scholar 

  9. Moran JM, Pazzano D, Bonassar LJ (2003) Tissue Eng 9:63

    Article  CAS  Google Scholar 

  10. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Polymer 44:1287

    Article  CAS  Google Scholar 

  11. Tan EPS, Lim CT (2005) Appl Phys Lett 87:123106

    Article  Google Scholar 

  12. Dukovski I, Muthukumar M (2003) J Chem Phys 118:6648

    Article  CAS  Google Scholar 

  13. Unnikrishnan VU, Reddy JN (2005) Int J Multiscale Comput Eng 3:437

    Article  Google Scholar 

  14. Northolt MG, Hout RVD (1985) Polymer 26:310

    Article  CAS  Google Scholar 

  15. Tan EPS, Lim CT (2006) Composites Sci Technol 66:1099

    Article  Google Scholar 

  16. Richardson ID, Ward IM (1970) J Phys D: Appl Phys 3:643

    Article  CAS  Google Scholar 

  17. Northolt MG (1980) Polymer 21:1199

    Article  CAS  Google Scholar 

  18. Northolt MG, Baltussen JJM (2002) J Appl Polym Sci 83:508

    Article  CAS  Google Scholar 

  19. Northolt MG, Baltussen JJM (2002) J Appl Polym Sci 83:508

    Article  CAS  Google Scholar 

  20. Northolt MG, Roos A, Kampschreur JH (1989) J Polym Sci: Part B: Polym Phys 27:1107

    Article  CAS  Google Scholar 

  21. Frankland SJV, Brenner DW (1999) In: National meeting of the american chemical society. New Orleans, LA, p 38953

  22. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Appl Mech Rev 55(6):495

    Article  Google Scholar 

  23. Chandra N, Namilae S, Shet C (2004) Phys Rev B 69:94101

    Article  Google Scholar 

  24. Mylvaganam K, Zhang L (2004) Carbon 42:2025

    Article  CAS  Google Scholar 

  25. Griebel M, Hamaekers J (2004) Comp Methods Appl Mech Eng 193:1773

    Article  Google Scholar 

  26. Blonski S, Brostow W, Kubÿt J (1994) Phys Rev B 49:6494

    Article  CAS  Google Scholar 

  27. Kalb B, Pennings AJ (1980) Polymer 21:607

    Article  CAS  Google Scholar 

  28. Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G (1990) Macromolecules 23:634

    Article  CAS  Google Scholar 

  29. De-Santis P, Kovacs AJ (1968) Biopolymers 6:299

    Article  CAS  Google Scholar 

  30. Yamane H, Sasai K, Takano M (2004) J Rheol 48:599

    Article  CAS  Google Scholar 

  31. Fujita M, Doi Y (2003) Biomacromolecules 4:1301

    Article  CAS  Google Scholar 

  32. Namilae S, Chandra N, Shet C (2004) Chem Phys Lett 387:247

    Article  CAS  Google Scholar 

  33. Somania RH, Yanga L, Zhub L, Hsiao BS (2005) Polymer 46:8587

    Article  Google Scholar 

  34. Welch P, Muthukumar M (2001) Phys Rev Lett 87:218302

    Article  CAS  Google Scholar 

  35. Zussman E, Rittel D, Yarin AL (2003) Appl Phys Lett 82:3958

    Article  CAS  Google Scholar 

  36. Tan EPS, Lim CT (2004) Appl Phys Lett 84:3400

    Article  Google Scholar 

  37. Thelen S, Barthelat F, Brinson LC (2004) J Biomed Mat Res 69A:601

    Article  CAS  Google Scholar 

  38. Leenslag JW, Pennings AJ (1987) Polym Commun 28:92

    CAS  Google Scholar 

  39. Leenslag JW, Pennings AJ (1987) Polymer 28:1695

    Article  CAS  Google Scholar 

  40. Fisher FT, Bradshaw RD, Brinson LC (2003) Compo Sci Technol 63(11):1689

    Article  CAS  Google Scholar 

  41. Mura T (1997) In: Micromechanics of defects in solids. Kluwer Academic

  42. Ward IM (1967) Br J Appl Phys 18:1165

    Article  CAS  Google Scholar 

  43. Baltussen JJM, Northolt MG (2001) Polymer 42:3835

    Article  CAS  Google Scholar 

  44. Baltussen JJM, Northolt MG, Hout RVD (1997) J Rheol 41:549

    Article  CAS  Google Scholar 

  45. Ruotsalainen T, Turku J, Heikkilä P, Ruokolainen J, Nykänen A, Laitinen T, Torkkeli M, Serimaa R, Ten Brinke G, Harlin A, Ikkala O (2005) Adv Mater 17:1048

    Article  CAS  Google Scholar 

  46. Demir MM, Yilgor I, Yilgor E, Erman B (2002) Polymer 43:3303

    Article  CAS  Google Scholar 

  47. Yuan XY, Mak AFT, Yao KD (2003) Polym Degrad Stability 79(1):45

    Article  CAS  Google Scholar 

  48. Broz ME, Vander Hart DL, Washburn NR (2003) Biomaterials 24:4181

    Article  CAS  Google Scholar 

  49. Cicero JA, Dorgan JR (2001) J Polym Environ 9:1

    Article  CAS  Google Scholar 

  50. Lim JY, Kim SH, Lim S, Kim YH (2002) Macromol Chem Phys 202:2447

    Article  Google Scholar 

  51. Fambri L, Pergoretti A, Fenner R, Incardona D, Migliaresi C (1997) Polymer 38:79

    Article  CAS  Google Scholar 

  52. Balac I, Milovancevic M, Tang C-Y, Uskokovic PS, Uskokovic DP (2004) Mater Lett 58:2437

    Article  CAS  Google Scholar 

  53. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  CAS  Google Scholar 

  54. Mezghani K, Spruiell JE (1998) J Polym Sci: Part B: Polym Phys 36:1005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support of the Laboratory for Molecular Simulation at Texas A&M University for providing software and computer time. The first three authors also gratefully acknowledge the partial support received from Dr. C. F. Shih at the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. N. Reddy or C. T. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unnikrishnan, V.U., Unnikrishnan, G.U., Reddy, J.N. et al. Atomistic-mesoscale coupled mechanical analysis of polymeric nanofibers. J Mater Sci 42, 8844–8852 (2007). https://doi.org/10.1007/s10853-007-1820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1820-6

Keywords

Navigation