Skip to main content
Log in

The effect of salts and pH buffered solutions on the phase transition temperature and swelling of thermoresponsive pseudogels based on N-isopropylacrylamide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The temperature sensitive nature of poly(N-isopropylacrylamide) makes it an attractive candidate for controlled drug delivery devices. A series of temperature responsive poly (N-isopropylacrylamide)-polyvinyl pyrrolidinone random copolymers were produced by free radical polymerisation using 1-hydroxycyclohexylphenyketone as a UV-light sensitive initiator. The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (FTIR). The copolymers possess a lower critical solution temperature (LCST) in pure water, but the transition temperature may be affected by the addition of various cosolutes. The LCST of the pseudogels (physically crosslinked gels) was investigated in distilled water and a variety of salt and pH buffer solutions, using modulated differential scanning calorimetry (MDSC) and rheological analysis. The pH buffer solutions prepared mimic the variety of conditions encountered by drug delivery systems administered orally. The pH effects on the LCSTs of the temperature sensitive gels appear not obvious; while the salts used to prepare the pH buffer solutions have a more notable effect (‘salting out effect’) on the phase transition temperature. All swelling studies were carried out on the hydrogels at 37°C in distilled water, pH buffer 1.2 and pH buffer 6.8. The swelling/dissociation behaviour of the gels is found to be highly dependent on the pH buffer solution used, as the salts incorporated in preparing the pH buffer solutions lowers the phase transition of the copolymers to below the test temperature of 37°C, thus making them less soluble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wise DL (2001) Handbook of Pharmaceutical Controlled Release Technology. Marcel Dekker Inc., New York-Basel

    Google Scholar 

  2. Alderborn G, Aulton M (2002) Pharmaceutics, the science of dosage form design Ed., Elsevier Science, pp 397–441

  3. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Chem Rev 99:3181–3198

    Article  CAS  Google Scholar 

  4. Park K, Qui Y (2001) Adv Drug Deliv Rev 53:321–339

    Article  Google Scholar 

  5. Nguyen KT, West JL (2002) Biomaterials 23:4307–4314

    Article  CAS  Google Scholar 

  6. Kishida A, Ikada Y (2002) Hydrogels for biomedical and pharmaceutical applications. In: Dumitriu S (ed) Polymeric biomaterials, 2nd ed., pp 133–45

  7. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  8. Ravichandran P, Shantha KL, Panduranga Rao K (1997) Inter J Pharm 154:89–94

    Article  CAS  Google Scholar 

  9. Kopeček J (2003) Eur J Pharmaceutical Sci 20:1–16

    Article  Google Scholar 

  10. Bromberg LE, Ron ES (1998) Adv Drug Deliv Rev 31:197–221

    Article  CAS  Google Scholar 

  11. LaPorte RJ (1997) Hydrophilic polymer coatings for medical devices. Technomic Pub. Co. Inc

  12. Chilkoti A, Dreher M, Meyer D, Raucher D (2002) Adv Drug Deliv Rev 54:613–630

    Article  CAS  Google Scholar 

  13. Grass M, Colombo I, Lapasin R (2000) J Controlled Release 68:97–113

    Article  Google Scholar 

  14. Murata Y, Sasaki N, Miyamoto E, Kawashima S (2000) Eur J Pharmaceutics Biopharm 50:221–226

    Article  CAS  Google Scholar 

  15. Bokias G, Staikos G, Iliopoulos I (2000) Polymer 41:7399–7405

    Article  CAS  Google Scholar 

  16. Costa R (2002) Polymer 43:5879–5885

    Article  CAS  Google Scholar 

  17. Liu XM, Wang LI, Wang L, Haung J, He C (2004) Biomaterials 25:5659–5666

    Article  CAS  Google Scholar 

  18. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  19. Deshmukh MV, Vaidya AA, Kulkarni MG, Rajamohonan PR, Ganapathy S (2000) Polymer 41:7951–7960

    Article  CAS  Google Scholar 

  20. Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  21. Geever LM, Devine DM, Nugent MJD, Kennedy JE, Lyons JG, Hanley A, Higginbotham CL (2006) Eur Polymer J 42:2540

    Article  CAS  Google Scholar 

  22. Geever LM, Devine DM, Nugent MJD, Kennedy JE, Lyons JG, Higginbotham CL (2006) Eur Polymer J 42:69–80

    Article  CAS  Google Scholar 

  23. Ju HK, Kim SY, Kim SJ, Lee YM (2002) J Appl Polymer Sci 83:1128–1139

    Article  CAS  Google Scholar 

  24. Ebril C, Kazancioğlu E, Uyanik N (2004) Eur Polymer J 40:1145–1154

    Article  Google Scholar 

  25. Heskins M, Guillet JE (1969) J Macromol 2:1441

    Google Scholar 

  26. Schild HG, Muthukumar M, Tirrell DA (1991) Macromolecules 24:948–952

    Article  CAS  Google Scholar 

  27. Kubota K, Fujishige S, Ando I (1990) J Phys Chem 94:5154–5158

    Article  CAS  Google Scholar 

  28. Boutris C, Chatzi E (1997) Polymer 38:2567–2570

    Article  CAS  Google Scholar 

  29. Feil H, Bae YH, Feijen J, Kim SW (1993) Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  30. Tam KC, Wu XY, Pelton RH (1992) Polymer 33:436–438

    Article  CAS  Google Scholar 

  31. Yang H, Cheng R, Wang Z (2003) Polymer 44:7175–7180

    Article  CAS  Google Scholar 

  32. Graziano G (2000) Int J Biol Macromol 27:89–97

    Article  CAS  Google Scholar 

  33. Han CK, Bae YH (1998) Polymer 39:2809–2814

    Article  CAS  Google Scholar 

  34. Ruel-Gariépy E, Leroux JC (2004) Eur J Pharm Biopharm 58:409–426

    Article  Google Scholar 

  35. Benrebouh A, Avoce D, Zhu XX (2001) Polymer 42:4031–4038

    Article  CAS  Google Scholar 

  36. Gan LH, Roshan Deen G, Loh XJ, Gan YY (2001) Polymer 42:65–69

    Article  CAS  Google Scholar 

  37. Eeckman F, Amighi K, Moës AJ (2001) Int J Pharm 222:259–270

    Article  CAS  Google Scholar 

  38. Eeckman F, Moës AJ, Amighi K (2002) Int J Pharm 241:113–125

    Article  CAS  Google Scholar 

  39. Jones MS (1999) Eur Polymer J 35:795–801

    Article  CAS  Google Scholar 

  40. Narasimhan B, Peppas NA (1996) Macromolecules 29:3283–3291

    Article  CAS  Google Scholar 

  41. Devine DM, Higginbotham CL (2003) Polymer 44:7851–7860

    Article  CAS  Google Scholar 

  42. Zhang XZ, Zhuo RX (2000) Eur Polymer J 36:643–645

    Article  CAS  Google Scholar 

  43. Devine DM, Geever LM, Higginbotham CL (2005) J Mater Sci 40:3429–3436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in parts by grants from both Enterprise Ireland and the Athlone Institute of Technology research and development fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement L. Higginbotham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geever, L.M., Nugent, M.J.D. & Higginbotham, C.L. The effect of salts and pH buffered solutions on the phase transition temperature and swelling of thermoresponsive pseudogels based on N-isopropylacrylamide. J Mater Sci 42, 9845–9854 (2007). https://doi.org/10.1007/s10853-007-1814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1814-4

Keywords

Navigation