Skip to main content

Advertisement

Log in

Shear stress measurement in nickel and nickel–60 wt% cobalt during one-dimensional shock loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The shear strength of pure nickel (Ni), and its alloy, Ni–60Co (by wt%), has been determined during one-dimensional shock loading in the impact stress range 0–10 GPa. The influence of the reduced stacking fault energy (SFE) for the Ni–60Co has been investigated. The shear strength (τ) and the lateral stress (σy) both increase with the impact stress for each material. The shear stress has been found to be higher in the nickel than in the alloy. The progressive decrease of the lateral stress behind the shock front indicates an increase of the shear strength. A more complex mechanism of deformation has been found for the alloy since twin formation has been observed in the microstructure, while none has been seen in nickel. It is thought that mechanical twinning plays a predominant role in the deformation mechanism of the alloy resulting in the reduction of the material strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davison LW, Graham RA (1979) Phys Rept 55:255

    Article  CAS  Google Scholar 

  2. Hansen M (1958) Constitution of binary alloys. Mc Graw-Hill, London

    Book  Google Scholar 

  3. Gallagher PCJ (1970) Met Trans 1:2429

    CAS  Google Scholar 

  4. Meziere Y, Millett JCF, Bourne NK (2007) Int J Impact Eng 34:360

    Article  Google Scholar 

  5. Marsh SP (1980) Shock Hugoniot data. University of California Press, Los Angeles

    Google Scholar 

  6. Trunin RF, Belakiova MY, Zhernokletov MV, Sutulov YN, Izv. Akad. Nauk. SSSR, Fiz Zemli (1991) Bull Acad Sci USSR, Phys. of the solid Earth, 99–109

  7. Rose MF, Berger TL, Inman MC (1967) Trans Met Soc AIME 239:1998

    CAS  Google Scholar 

  8. Kressel H, Brown N (1967) J Appl Phys 38:1618

    Article  CAS  Google Scholar 

  9. Grace FI (1969) J Appl Phys 40:2649

    Article  CAS  Google Scholar 

  10. Murr LE, Kuhlmann-Wilsdorf D (1978) Acta Metall 26:847

    Article  CAS  Google Scholar 

  11. Greulich F, Murr LE (1979) Mater Sci Eng 39:81

    Article  CAS  Google Scholar 

  12. Meyers MA, Kestenbach HJ, Soares CAO (1980) Mater Sci Eng 45:143

    Article  CAS  Google Scholar 

  13. Kazmi B, Murr LE (1981) In: Meyers MA, Murr LE (eds) Shock waves and high-strain-rate phenomena in metals. Plenum, New York, pp 733–752

  14. Follansbee PS, Gray GT III (1991) Int J Plast 7:651–660

    Article  CAS  Google Scholar 

  15. Gray GT III (1992) In: Meyers MA, Murr LE, Standhammer KP (eds) Shock-wave and high strain rate phenomena in materials. Marcel Deker, New York, pp 899–911

  16. Murr LE, Huang J-Y (1975) Mater Sci Eng 19:115

    Article  CAS  Google Scholar 

  17. Rohatgi A, Vecchio KS (2002) Mater Sci Eng A328:256

    Article  CAS  Google Scholar 

  18. Rohatgi A, Vecchio KS, Gray GT III (2001) Met Mater Trans A 32A:135–145

    Article  CAS  Google Scholar 

  19. Rohatgi A, Vecchio KS, Gray GT III (2001) Acta Mater 49:427

    Article  CAS  Google Scholar 

  20. Rohatgi A, Vecchio KS, Gray GT III (2001) In: Staundhammer K, Murr L, Meyers Elsevier M (eds) Fundamental issue and applications of the shock-wave and high-rate phenomena. Amsterdam, pp 25–32

  21. Schneider MS, Kad B, Kalantar DH, Remington BA, Kenik E, Jarmakani H, Meyers MA (2005) Int J Impact Eng 32:473

    Article  Google Scholar 

  22. Schneider MS, Kad BK, Gregori F, Kalantar DH, Reminton BA, Meyers MA (2004) Mater Sci Forum 465–466:27

  23. Dandekar DP, Martin AG (1980) In: Meyers MA, Murr LE (eds) Shock waves and high-strain-rate phenomena in metals, Plenum, New York, pp 573–587

  24. Zaretsky EB, Kanel GI, Razorenov SV, Baumung K (2005) Int J Impact Eng 31:41

    Article  Google Scholar 

  25. Bourne NK (2003) Meas Sci Technol 14:273

    Article  CAS  Google Scholar 

  26. Meyer LW, Behler FJ, Frank K, Magness LS (1990) In: Antonio S (ed) 12th Int. Symp. Ballistics, Texas, pp 419–428

  27. Rosenberg Z, Partom YJ (1985) J Phys D Appl Phys 58:3072

    Article  Google Scholar 

  28. Millett JCF, Bourne NK, Rosenberg Z (1996) J Phys D 29:2466

    Article  CAS  Google Scholar 

  29. Rosenberg Z, Bourne NK, Millett JCF (2006) In: Furnish MD (ed) Shock compression of condensed matter – 2006. AIP Press, Melville, NY, pp 1207–1210

  30. Bourne NK, Rosenberg Z (1997) Meas Sci Technol 8:570

    Article  CAS  Google Scholar 

  31. Brar NS, Bless SJ (1992) High Pressure Res 10:773

    Article  Google Scholar 

  32. Kanel GI, Razorenov SV, Savinykh AS, Rajendran A, Chen Z (2005) J Appl Phys 98:113523

    Article  Google Scholar 

  33. Bourne N, Millett J, Murray N, Rosenberg Z (1998) J Mech Phys Solids 46:1887

    Article  CAS  Google Scholar 

  34. Millett JCF, Bourne NK (2001) J Mater Sci 36:3409

    Article  CAS  Google Scholar 

  35. Gray GT, Bourne NK, Millett JCF (2003) J Appl Phys 94:6430

    Article  CAS  Google Scholar 

  36. Millett JCF, Bourne NK, Gray GT III, Jones IP (2002) Acta Mater 50:4801

    Article  CAS  Google Scholar 

  37. Meziere YJE, Millett JCF, Bourne NK (2006) J Appl Phys 100:033513

    Article  Google Scholar 

  38. Millett JCF, Meziere YJE, Gray GT III, Cerreta EK, Bourne NK (2006) J Appl Phys 100:063506

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Matt Eatwell, Ivan Knapp and Adrian Mustey for valuable technical support. Andrew Wallwork and Andrew Workman of AWE (Atomic Weapon Establishment) are thanked for their interest and encouragement. This research was funded by the Engineering and Physical Sciences Research Council (Grant no. GR/S07476/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. F. Millett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millett, J.C.F., Meziere, Y.J.E. & Bourne, N.K. Shear stress measurement in nickel and nickel–60 wt% cobalt during one-dimensional shock loading. J Mater Sci 42, 5941–5948 (2007). https://doi.org/10.1007/s10853-007-1716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1716-5

Keywords

Navigation