Skip to main content
Log in

A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Adsorption of 3-aminopropyltriethoxysilane (APTS) on magnetite nanoparticles during its formation has been investigated to optimise the preparation of stable aqueous dispersion of amine derivatised magnetite nanoparticles. APTS adsorbs chemically on the surface of magnetite particle modifying its surface which is evident from thermal and C, H, N analysis. The variation of particle size has been observed with change of APTS concentration. X-ray diffractogram shows the formation of pure inverse spinel phase magnetite with average crystallite size 7 nm when equimolar (Fe3O4: APTS = 1:1) quantity of APTS was used during its synthesis. The presence of free surface –NH2 groups and Fe–O–Si bonds was observed by FTIR. Raman spectrum further confirms the presence of surface –NH2 groups. Transmission electron microscopy shows formation of particles of average size between 7 nm and 12 nm. The effective hydrodynamic diameter of the APTS coated particle agglomerates is 45.8 nm in stable aqueous colloidal dispersion, which is evident from photon correlation spectroscopy. VSM measurements at room temperature of both silanised and unsilanised magnetite shows their superparamagnetic nature with saturation magnetisation 41 e.m.u/g and 56 e.m.u/g, respectively. Avidin has been immobilised on the surface through glutaraldehyde, which demonstrates the possibility of the synthesised material to be used in protein immobilisation to form bioactive magnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
 Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaterjee J, Haik Y, Chen CJ (2001) J Magn Magn Mater 225:21

    Article  Google Scholar 

  2. Bilková Z, Slováková M, Horák D, Lenfeld J (2002) J Chromatogr B 770:177

    Article  Google Scholar 

  3. Pourfarzaneh M, Camel RS, London J, Dawes CC (1982) Method Biochem Anal 28:267

    Google Scholar 

  4. Homes E, Korsnes L (1990) Genet Anal Technol Appl 7:145

    Google Scholar 

  5. Sonti SV, Bose A (1991) J Colloid Inter Sci 170:575

    Article  Google Scholar 

  6. Cupta PK, Hung CT (1989) Life Sci 44:175

    Article  Google Scholar 

  7. Coradin T, Lopez PJ (2003) Chembiochem 4:251

    Article  CAS  Google Scholar 

  8. Whitehead RA, Chagnon MS, Groman EU, Josephson L (1985) USP 4554,088

  9. Ma M, Zhang Y, Yu W (2003) Colloids Surfaces A: Physicochem Eng Aspects 212(2–3):219

    Google Scholar 

  10. Yamaura M, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) J Magn Magn Mater 279(2–3):210

    Article  CAS  Google Scholar 

  11. Shen X-C, Fang X-Z, Zhou Y-H, Liang H (2004) Chem Lett 33(11):1468–1469

    Article  CAS  Google Scholar 

  12. Kobayashi H, Matsunaga T (1991) J Colloid Interface Sci 141:505

    Article  CAS  Google Scholar 

  13. Massart R, Cabuil V (1987) J Chem Phys 84(7–8):967

    CAS  Google Scholar 

  14. Bee A, Massart R (1990) J Magn Magn Mater 122:1

    Google Scholar 

  15. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, Weinheim, p 207

    Google Scholar 

  16. Brinker CJ, Schere GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press, Inc

  17. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, Weinheim, p 135

    Google Scholar 

  18. De Faria LA, Venâncio Silva S, De Oliveria MT (1997) J Raman Spectroscopy 28:873

    Article  Google Scholar 

  19. Hartridge A, Bhattacharya AK, Sengupta M, Majumdar CK, Das D, Chintalapudi SN (1997) J Magn Magn Mater 176:L89

    Article  CAS  Google Scholar 

  20. Rao ZM, Wu TH, Peng SY (1995) Acta Phys Chim Sin 11:395

    Google Scholar 

  21. Mckittrick MW, Jones CW (2003) Chem Mater 15:1132

    Article  CAS  Google Scholar 

  22. Bruce IJ, Sen T (2005) Langmuir 21:7029

    Google Scholar 

  23. Ambastha RD, Wattal PK, Singh S, Bahadur D (2003) J Magn Magn Mater 267:335

    Article  CAS  Google Scholar 

  24. Bruke NAD, Stöver HDH, Dawson FP (2002) Chem Mater 14:4752

    Article  CAS  Google Scholar 

  25. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley Publishing Company, p 190

Download references

Acknowledgements

Authors are thankful to CSIR New Delhi for providing financial support for this work. Dr D. Das, IUC-DAE Consortium for Scientific Research, Kolkata, Dr M. K. Panigrahi, IIT Kharagpur and Dr D. Bahadur, IIT Bombay, Powai are gratefully acknowledged for Mössbauer, Raman and VSM studies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchanan Pramanik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, S., Pramanik, N., Mukherjee, S. et al. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J Mater Sci 42, 7566–7574 (2007). https://doi.org/10.1007/s10853-007-1597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1597-7

Keywords

Navigation