Skip to main content

Advertisement

Log in

Towards an atomistic understanding of apatite–collagen biomaterials: linking molecular simulation studies of complex-, crystal- and composite-formation to experimental findings

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The investigation of the atomistic mechanisms of crystal nucleation constitutes a major challenge to both experiment and theory. Understanding the underlying principles of composite materials formation represents an even harder task. For the investigation of the mechanisms of crystal nucleation a profound knowledge of the ion–solvent and the ion–ion interactions in solution is required. Studying biocomposites like fluorapatite–collagen materials, we must furthermore account for the biomolecules and their effect on the growth process. Molecular simulation approaches directly offer atomistic resolution and hence appear particularly suited for detailed mechanistic analyses. However, the computational effort is typically immense and for a long time the investigation of crystal nucleation from atomistic simulations was considered as impossible. We therefore developed special simulation strategies, which allowed to considerably extent the limitations of computational studies in this field. In combination with advanced experimental investigations this provided new insights into the nucleation of biomimetic apatite–gelatin composites and the mechanisms of hierarchical growth at the micro- and mesoscopic scale. Along this line, molecular simulation studies reflect a powerful tool to achieve a profound understanding of the complex growth processes of apatite/collagen composites. Apart from reviewing related work we outline future directions and discuss the perspectives of simulation studies for the investigation of biomineralization processes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kniep R, Simon P (2007) Top Curr Chem 270:73

    Article  CAS  Google Scholar 

  2. Harding JH, Duffy DM (2005) J Mater Chem 16:1105

    Article  CAS  Google Scholar 

  3. Rulis P, Ouyang L, Ching WY (2004) Phys Rev B 70:155104

    Article  CAS  Google Scholar 

  4. de Leeuw NH (2002) Phys Chem Chem Phys 4:3865

    Article  CAS  Google Scholar 

  5. Kay MI, Young RA, Posner RA (1964) Nature 204:1050

    Article  CAS  Google Scholar 

  6. Elliot JC, Mackie PE, Young RA (1973) Science 180:1055

    Article  Google Scholar 

  7. van Rees HB, Menngeot M, Kostiner E (1973) Mater Res Bull 8:1307

    Article  Google Scholar 

  8. Suda H, Yashima M. Kakihana M, Yoshimura M (1995) J Phys Chem 99:6752

    Article  CAS  Google Scholar 

  9. Elliot JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates in studies in Inorganic Chemistry 18. Elsevier, Amsterdam

  10. Hochrein O, Kniep R, Zahn D (2005) Chem Mater 7:1978

    Article  CAS  Google Scholar 

  11. Zahn D, Hochrein O (2006) Z Anorg Allgem Chem 632:79

    Article  CAS  Google Scholar 

  12. Hauptmann S, Duffner H, Brickmann J, Kast SM, Berry RS (2003) Phys Chem Chem Phys 5:635

    Article  CAS  Google Scholar 

  13. de Leeuw NH (2004) Phys Chem Chem Phys 6:1860

    Article  CAS  Google Scholar 

  14. Posner PA (1969) Physiol Rev 49:760

    CAS  Google Scholar 

  15. Astala R, Stott MJ (2005) Chem Mater 17:4125

    Article  CAS  Google Scholar 

  16. Dorozhkin SV, Epple M (2002) Angew Chem 114:3260

    Article  Google Scholar 

  17. Zahn D, Hochrein O (2003) Phys Chem Chem Phys 5:4004

    Article  CAS  Google Scholar 

  18. de Leeuw NH (2004) J Phys Chem B 108:1809

    Article  CAS  Google Scholar 

  19. Lide DR (1997–1998) CRC handbook of chemistry and physics, 78th edn. CRC Press, Boca Raton, New York

  20. Zahn D (2004) Z Anorg Allgem Chem 630:1507

    Article  CAS  Google Scholar 

  21. Kawska A, Brickmann J, Kniep R, Hochrein O, Zahn D (2006) J Chem Phys 124:24513

    Article  CAS  Google Scholar 

  22. Zahn D (2004) Phys Rev Lett 92:40801

    Article  CAS  Google Scholar 

  23. Bhowmik R, Katti SK, Katti D (2007) Polymer 48:664

    Article  CAS  Google Scholar 

  24. Buehler M (2006) J Mater Res 21:1947

    Article  CAS  Google Scholar 

  25. Buehler M (2006) Proc Nat acad Sci 103:12285

    Article  CAS  Google Scholar 

  26. Schepers T, Brickmann J, Hochrein O, Zahn D (2007) Z Anorg Allgem Chem 633:411

    Article  CAS  Google Scholar 

  27. Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R (2006) Angew Chem 118:1939

    Article  Google Scholar 

  28. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Nature 414:773

    Article  CAS  Google Scholar 

  29. Currey J (2001) Nature 414:699

    Article  CAS  Google Scholar 

  30. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Nat Mater 4:612

    Article  CAS  Google Scholar 

  31. Simon P, Zahn D, Lichte H, Kniep R (2006) Angew Chem Int Ed 45:1911

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support was provided by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Zahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahn, D., Hochrein, O., Kawska, A. et al. Towards an atomistic understanding of apatite–collagen biomaterials: linking molecular simulation studies of complex-, crystal- and composite-formation to experimental findings. J Mater Sci 42, 8966–8973 (2007). https://doi.org/10.1007/s10853-007-1586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1586-x

Keywords

Navigation