Skip to main content
Log in

Hydrolytic ageing of syntactic foams for thermal insulation in deep water: degradation mechanisms and water uptake model

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper focuses on a novel syntactic foam formulation based on a model diepoxy-diamine matrix with a controlled architecture, discusses the factors governing the long-term performance of these materials and gives a predictive model to assist in the design of efficient and safe insulating systems.

Hygrothermal ageing in deionized water at 20°C, 60°C, 100°C and 120°C over 18 months (with no additional pressure) is followed by both gravimetric and impedance measurements. This original protocol provides the evolution with time of both mass gain and intrinsic material conductivity. Attention is paid to the degradation phenomenon observed after the matrix has reached saturation and the corresponding increase of both mass gain and conductivity. The latter suggests the occurrence of ionic extraction from the microsphere glass undergoing water leaching.

A model of mass gain is proposed to explain the gravimetric data and predict the long-term mass gain that governs the mechanical and thermal performances. The temperature dependence of fitting parameters follows an Arrhenius law and activation energies calculated support the scheme of glass corrosion by water during hygrothermal ageing, with respect to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. FRANKLIN and A. WRIGHT, in Proceedings of the 13th International Conference on Pipeline Protection, edited by BHR Group Limited, (Edinburgh, UK, September 1999).

  2. L. WATKINS and E. HERSHEY, World Pipelines 4 (2004) 49.

    Google Scholar 

  3. B. VAN BELLE, in “Offshore Technology Conference”, Houston, Texas (USA) May 2002.

  4. A. AVENA, Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, 1987.

  5. G. FONBLANC, Ph.D. Thesis, Université Bordeaux I, 1986.

  6. L. WATKINS, in 7th International Conference on Offshore Mechanics and Arctic Engineering, Houston, Texas (USA) 1988.

  7. T. FINE, H. SAUTEREAU and V. SAUVANT-MOYNOT, J. Mat. Sci. 38 (2003) 2709.

    Article  CAS  Google Scholar 

  8. D. CHOQUEUSE, A.CHOMARD and C. BUCHERIE, in Offshore Technology Conference, Houston, Texas (USA) May 2002.

  9. V. A. KOCHETKOV and R. D. MAKSIMOV, Mechanics 32 (1996) 61.

    Google Scholar 

  10. D. CHOQUEUSE, A. CHOMARD and P. CHAUCHOT, in Offshore Technology Conference, Houston, Texas (USA) May 2004.

  11. A. BRINI, F. PRADEL, A. BENHAMIDA and H. DUMONTET, in ICCM-14, (San Diego, California (USA), July 2003).

  12. A. BONNET, J. P. PASCAULT, H. SAUTEREAU, M. TAHA and Y. CAMBERLIN, Macromolecules 32 (1999) 8517.

    Article  CAS  Google Scholar 

  13. E. GIRARD-REYDET, C. C. RICCARDI, H. SAUTEREAU and J. P. PASCAULT, Macromolecules 28 (1995) 7599.

    Article  CAS  Google Scholar 

  14. E. MAIRE, N. GIMENEZ, V. SAUVANT-MOYNOT and H. SAUTEREAU, “Phil. Trans. of the Royal Society of London” (London, UK, November 2004), published under doi 10.1098/rsa.2005.1691.

  15. D. M. BRASHER and A. H. KINGSBURY, J. Appl. Chem. 4 (1954) 62.

    Article  CAS  Google Scholar 

  16. S. DUVAL, M. KEDDAM, F. ROPITAL, V. SAUVANT and H. TAKENOUTI, in Eurocorr 2001 (Riva Del Garda, Italy, October 2001).

    Google Scholar 

  17. B. ELLIS, in “Chemistry and Technology of Epoxy Resins” (Chapman & Hall, 1993).

  18. S. DUVAL, M. KEDDAM, F. ROPITAL, V. SAUVANT-MOYNOT and H. TAKENOUTI, in Eurocorr 2003 (Budapest, Hungary, October 2003).

    Google Scholar 

  19. H. OCHS, J. VOGELSANG and G. MEYER, Progr. Org. Coat. 46 (2003) 182.

    Article  CAS  Google Scholar 

  20. V. SAUVANT-MOYNOT, S. SCHWEITZER, J. GRENIER and S. DUVAL, in Eurocorr 2004 (Nice, France, September 2004).

    Google Scholar 

  21. J. P. PASCAULT, H. SAUTEREAU, J. VERDU and R. J. J. WILLIAMS, in “Thermosetting Polymers” (Marcel Dekker Inc., New York, 2002).

    Book  Google Scholar 

  22. R. J. CHARLES, J. Appl. Phys. 29 (1958) 1549.

    Article  CAS  Google Scholar 

  23. A. PAUL, in “Chemistry of Glasses” (Chapman & Hall, 1990), p. 179.

  24. B. C. BUNKER, J. Non-Cryst. Solids 179 (1994) 300.

    Article  CAS  Google Scholar 

  25. G. I. COOPER and G. A. COX, Applied Geochemistry 11 (1996) 511.

    Article  CAS  Google Scholar 

  26. K. KAMIDE, in “Thermodynamics of Polymer Solutions—Phase Equilibria and Critical Phenomena” (Elsevier, Amstedam, 1990), p. 651.

    Google Scholar 

  27. A. LEKATOU, S. E. FAIDI, D. GHIDAOUI, S. B. LYON and R. C. NEWMAN, Composites 28A (1997) 223.

    Article  CAS  Google Scholar 

  28. K. SAKAI, J. Membrane Sci. 96 (1994) 91.

    Article  CAS  Google Scholar 

  29. R. BATTISTELLA, Ph.D. Thesis, Ecole de Mulhouse (1971).

  30. D. LUO, J. FRANKLIN and A. WRIGHT, in “Proceedings of the 14th International Conference on Pipeline Protection, edited by BHR Group Limited”, (Edinburgh, UK, October 2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauvant-Moynot, V., Gimenez, N. & Sautereau, H. Hydrolytic ageing of syntactic foams for thermal insulation in deep water: degradation mechanisms and water uptake model. J Mater Sci 41, 4047–4054 (2006). https://doi.org/10.1007/s10853-006-7618-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7618-0

Keywords

Navigation