Skip to main content
Log in

An effective approach to activate 316L stainless steel for biomimetic coating of calcium phosphate: electrochemical pretreatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, an electrochemical (EC) method to activate 316L stainless steel (denoted as 316L) surface for biomimetic calcium phosphate (Ca–P) coatings was reported. After EC treatment, a gel-like Ca–P film with a thickness of 150 nm was generated on the stainless steel surface after treatment, which was composed of amorphous phase of calcium phosphate with a large number of crystal nuclei of octacalcium phosphate (OCP) inside. This Ca–P thin film is the main factor that causes Ca–P formation under biomimetic condition. The effectiveness of EC treatment was also compared with alkali heat (AH) pretreatment in producing biomimetic coating on 316L. A uniform Ca–P coating formed on EC treated samples after samples were immersed in saturated calcium solution (SCS) for several hours, while only some island-like deposits were found on the sample surface with AH treatment followed by immersion in SCS for several days. This work has explored a novel and effective pretreatment method to activate 316L implant surface, which can be expected to be applied to activate other metal implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Sivakumar M, Rajeswari S, Thulasiraman V (1996) J Mater Sci Lett 15:2192

    Article  CAS  Google Scholar 

  2. Gibbons DF (1982) Materials for orthopedic joint prosthesis. CRC Press, Boca Raton (FL), p 116

  3. Jacobs JJ, Gilbert JL, Urban RM (1998) J Bone Joint Surg 80A:268

    Article  Google Scholar 

  4. de Groot K, Geesink R, Klein CPAT, Serekian P (1987) J Biomed Mater Res 21:1375

    Article  Google Scholar 

  5. Liu DM, Chou HM, Wu JD (1994) J Mater Sci Mater Med 5:147

    Article  Google Scholar 

  6. Geesink RGT (1990) Clin Orthop 261:39

    Google Scholar 

  7. Shirkhanzadeh M (1998) J Mater Sci: Mater Med 9:67

    CAS  Google Scholar 

  8. Ban S, Maruno S (1998) Biomaterials 19:1245

    Article  CAS  Google Scholar 

  9. Manso M, Jimenez C, Morant C, Herrero P, Martinez-Duart JM (2000) Biomaterials 21:1755

    Article  CAS  Google Scholar 

  10. Sridhar TM, Mudali UK, Subbaiyan M (2003) Corrosion Sci 45:237

    Article  Google Scholar 

  11. Kannan S, Balamurugan A, Rajeswari S (2003) Mater Lett 57:2382

    Article  CAS  Google Scholar 

  12. Sridhar TM, Mudali UK, Subbaiyan M (2003) Corrosion Sci 45:2337

    Article  CAS  Google Scholar 

  13. Cotell CM (1993) Appl Surf Sci 69:140

    Article  CAS  Google Scholar 

  14. Liu DM, Yang Q, Trocaynski T (2002) Biomaterials 23:691

    Article  CAS  Google Scholar 

  15. Gross KA, Chai CS, Kannangara GSK, Bin-Nissan B, Hanley L (1998) J Mater Sci Mater Med 9:834

    Google Scholar 

  16. Liu DM, Troczynski T, Tseng WJ (2001) Biomaterials 21:1721

    Article  Google Scholar 

  17. Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomaterials 25:1187

    Article  CAS  Google Scholar 

  18. Kim H-M, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T (1999) J Biomed Mater Res 45:100

    Article  CAS  Google Scholar 

  19. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomaterials 23:2211

    Article  CAS  Google Scholar 

  20. Li P, Ducheyne P (1998) J Biomed Mater Res 41:341

    Article  CAS  Google Scholar 

  21. Lin FH, Hsu YS, Lin SH, Sun JS (2002) Biomaterials 23:4029

    Article  CAS  Google Scholar 

  22. Habibovic P, Barrere F, Blitterswijk CA, de Groot K, Layrolle P (2002) J Am Ceram Soc 85:517

    Article  CAS  Google Scholar 

  23. Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) J Mater Sci Mater Med 8:341

    Article  CAS  Google Scholar 

  24. Wen HB, de Wijin JR, Cui FZ, de Groot K (1998) Biomaterials 19:215

    Article  CAS  Google Scholar 

  25. Wen HB, Liu Q, de Wijin JR, de Groot K, Cui FZ (1998) J Mater Sci Mater Med 9:121

    Article  CAS  Google Scholar 

  26. Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) J Biomed Mater Res 32:409

    Article  CAS  Google Scholar 

  27. Zhang Q, Leng Y (2005) Biomaterials 26:3853

    Article  CAS  Google Scholar 

  28. Eanes ED (2001) In: Chow LC, Eanes ED (eds) Octacalcium phosphate. Monagr Oral Sci V 18, Basel, Karger, New York, pp 130–147

  29. Lu X, Leng Y (2005) Biomaterials 26:1097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China (C010515/30500126), and Research Grants Council of Hong Kong (No. HKUST 6037/02E). The characterization of the samples was conducted in the Materials Characterization & Preparation Facility of the Hong Kong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Leng, Y., Xin, R. et al. An effective approach to activate 316L stainless steel for biomimetic coating of calcium phosphate: electrochemical pretreatment. J Mater Sci 42, 6205–6211 (2007). https://doi.org/10.1007/s10853-006-1121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1121-5

Keywords

Navigation