Skip to main content
Log in

Reinforcement of hydrated portland cement with high molecular mass water-soluble polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A small amount of polymer in water solution form (polyvinylpyrolidone or polyvinylalcohol) was added to a mix high silicate cement + amorphous silica, with reduced water to cement ratio. It was shown that as the molecular mass of the polymer is increased, the fracture stress and the stored energy at fracture of the specimens improved. The polymer induces an increase of the critical stress intensity factor (K Ic ) (crack initiation). The fracture behaviour of the polymer modified cement paste beyond the elastic domain is also affected by PVA or PVP additions. The dissipated energy measured using the crack opening displacement CMOD was increased by a factor of two with 4wt% of PVP and by a factor of three with 3wt% of PVA, as a consequence of operative toughening mechanisms. The increase of mechanical properties is explained in case of PVP by crack interactions due to CSH microstructure modifications, and with PVA by crack bridging mechanisms as a consequence of dispersed polymer rich nodules in the hydrates phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. High performance fiber reinforced cement composite (1995) 2nd International Workshop. Ann Arbor, Michigan, Vol. 2, Naaman AE, Reinhardt HW (ed)

  2. Roy DM (1987) New strong cement materials: chemically bonded ceramics. Science 235:651

    Article  CAS  Google Scholar 

  3. Kardon JB (1997) Polymer-modified concrete: review. J Mater Civil Eng 9:85

    Article  CAS  Google Scholar 

  4. Hasegawa M, Kobayashi T, Dinilprem Pushpalal GK (1995) A new class of high strength, water and heat resistant, polymer-cement composite. Cem Concr Res 25:1191

    Article  CAS  Google Scholar 

  5. Sumathy CT, Dharakumar M, Soraja Devi M, Saccubai S (1997) Modification of cement mortars by polymer latex. J Appl Polym Sci 63:1251

    Article  CAS  Google Scholar 

  6. Ohama Y (1995) Handbook of polymer-modified concrete and mortars. Noyes Publications, USA

    Google Scholar 

  7. Jiang W, Roy DM (1995) Microstructural aspects of high-performance cement-based materials. Mat Res Soc Symp Proc 370:115

    CAS  Google Scholar 

  8. Aquino MJ, Li Z, Shah SP (1995) Mechanical properties of the aggregate and cement interface. Adv Cem Based Mater 2(6):211

    Article  CAS  Google Scholar 

  9. Chu T-J, Roberson RE (1994) Viscoelastic behaviour of macro-defect-free cement. J Mater Sci 29:2683

    Article  CAS  Google Scholar 

  10. Bortzmeyer D, Frouin L, Montardi Y, Orange G (1995) Microstructure and mechanical properties of macro-defect-free cements. J Mater Sci 30:4138

    Article  CAS  Google Scholar 

  11. Lewis JA, Boyer M, Bentz D-P (1994) Binder distribution in macro-defect-free cements: relation between percolative properties and moisture adsorption kinetics. J Am Ceram Soc 77(3):711

    Article  CAS  Google Scholar 

  12. Matsuyama H, Young JF (1999) Intercalation of polymers in calcium silicate hydrate. Chem Mater 11:16

    Article  CAS  Google Scholar 

  13. Merlin F, Lombois H, Joly S, Lequeux N, Halary JL, VanDamme H (2002) Cement-polymer and clay-polymer nano and meso composites: spotting the difference. J Mater Chem 12(11):3308

    Article  CAS  Google Scholar 

  14. Morlat R, Biebuyck J-J, Godard P, Microstructural analysis of high molecular mass polymer modified cement pastes, to be published

  15. Igarashi S-I, Bentur A, Kovler K (2000) Autogenous shrinkage and induced restraining stresses in high-strength concretes. Cem Concr Res 30(11):1701

    Article  CAS  Google Scholar 

  16. Bissonnette B, Pierre P, Pigeon M (1999) Influence of key parameters on drying shrinkage of cementitious materials. Cem Concr Res 29(10):1655

    Article  CAS  Google Scholar 

  17. Orange G, Chane-Ching JY, Klur Y (1999) Rhodia Internal Research Report ‘Bétons ductiles’

  18. Garashi S, Kubo HR, Kawamura M (2000) Long-term volume changes and microcracks formation in high strength mortars. Cem Concr Res 30(6):943

    Article  Google Scholar 

  19. Beaudoin J-J, Gu P, Myers RE (1997) Flexural strength of cement paste composites containing micron and sub-micron nickel particulates. Cem Concr Res 27(1):23

    Article  CAS  Google Scholar 

  20. Struble LJ, Stutzman PE, Fuller ER (1989) Microstructural aspects of the fracture of hardened cement paste. J Am Ceram Soc 72(12):2295

    Article  CAS  Google Scholar 

  21. Abell AB, Lange DA (1997) The role of crack deflection in toughening of cement-based material. Brittle Matrix Composites, 5 Proc. Int. Symp. pp 241–250

  22. Zampini D, Jennings HM, Shah SP (1995) Characterisation of the paste-aggregate interfacial transition zone surface-roughness and its relationship to the fracture-toughness of concrete. J Mater Sci 30:3149

    Article  CAS  Google Scholar 

  23. Lange DA, Ouyang C, Shah SP (1996) Behaviour of cement based matrices reinforced by randomly dispersed microfibers. Adv Cem Based Mater 3(1):20

    CAS  Google Scholar 

  24. Easley TC, Faber KT, Shah SP (1999) Use of a crack-bridging single-fibre pullout test to study steel fiber/cement matrix composites. J Am Ceram Soc 82(12):3513

    Article  CAS  Google Scholar 

  25. Li VC, Maalej M (1996) Toughening in cement based composites.1. Cement, mortar, and concrete. Cem Concr Compos 18(4):223

    Article  Google Scholar 

  26. Thouless MD (1988) Bridging and damage zones in crack growth. J Am Ceram Soc 71(6):408

    Article  CAS  Google Scholar 

  27. Poon CS, Groves GW (1987) The effect of latex on macro-defect-free cement. J Mater Sci 22:2148

    Article  CAS  Google Scholar 

  28. Becher PF, Hsueh C-H, Angelini P, Tiegs TN (1988) Toughening behavior in whiskers-reinforced ceramic matrix composites. J Am Ceram Soc 71(12):1050

    Article  CAS  Google Scholar 

  29. Zhang D, Wu K (1999) Fracture process zone of notched three-point-bending concrete beams. Cem Concr Res 29(12):1887

    Article  CAS  Google Scholar 

  30. Otsuka K, Date H (2000) Fracture process zone in concrete tension specimen. Eng Fract Mech 65:111

    Article  Google Scholar 

  31. Evans AG, Faber KT (1984) Crack-growth resistance of microcracking brittle materials. J Am Ceram Soc 67(4):255

    Article  Google Scholar 

  32. Hilleborg A, Modeer M, Peterson PE (1973) Analysis of crack formation and growth in concrete by fracture mechanisms and finite elements. Cem Concr Res 6:773

    Article  Google Scholar 

  33. Planas J, Elices M, Guinea GV (1995) The extended cohesive crack. In: Baker G, Karihaloo BL (ed) Fracture of brittle disordered materials. London

  34. Elices M, Planas J (1996) Fracture mechanics parameters of concrete: an overview. Adv Cem Based Mater 4(4):116

    Article  Google Scholar 

  35. Orange G, Acker P, Vernet C (1999) A new generation of UHP concrete: Ductal. In: Reinhardt HW, Naaman AE (ed) Damage resistance and micromechanical analysis, Proceedings of third International RILEM Workshop, Mainz May 99, pp 101–112

  36. Spinner S, Tefft WE (1961) A method for determining mechanical resonance frequencies and for calculating elastic moduli from these frequencies, Proceedings ASTM 61

  37. Boccaccini AR, Fan Z (1997) A new approach for the Young’s Modulus-porosity correlation of ceramic materials. Ceram Int 23:239

    Article  CAS  Google Scholar 

  38. Morlat R, Godard P, Bomal Y, Orange G (1999) Dynamic mechanical thermoanalysis of latexes in cement paste. Cem Concr Res 29(6):847

    Article  CAS  Google Scholar 

  39. Cotterell B, Mai YW (1996) Fracture mechanics of cementitious materials, Ed. Blackie Academic & Professional, Chapman & Hall

  40. Morlat R, Jonas A, I Klur, Godard P Characterization of hydrates nature and polymer-hydrates interactions in high molecular mass PVA and PVP modified cement pastes, to be published

  41. Morlat R, Nonat A, Godard P Hydration kinetic of cement pastes modified by high molecular mass polymers, to be published

  42. Kanda T, Li VC (1998) Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. J Mater Civil Eng 10(1):5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the “RHODIA-Centre de Recherches d’Aubervilliers, France”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Morlat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morlat, R., Orange, G., Bomal, Y. et al. Reinforcement of hydrated portland cement with high molecular mass water-soluble polymers. J Mater Sci 42, 4858–4869 (2007). https://doi.org/10.1007/s10853-006-0645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0645-z

Keywords

Navigation