Skip to main content
Log in

A constitutive equation for the dynamic deformation behavior of polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A constitutive equation based on the generalized concept of thermally activated flow units is developed to describe the stress–strain behavior of polymers as a function of temperature, strain-rate, and superposed hydrostatic pressure under conditions in which creep and long-term relaxation effects are negligible. The equation is shown to describe the principal features of the dynamic stress–strain behavior of polytetrafluoroethylene and, also, the yield stress of polymethylmethacrylate as a function of temperature and strain rate. A key feature of the model, not utilized in previous constitutive equation descriptions, is an inverse shear stress dependence of the shear activation volume. In contrast to metal deformation behavior, an enhanced strain hardening with increasing strain at higher strain rates and pressures is accounted for by an additional rate for immobilization of flow units. The influence of hydrostatic pressure enters through a pressure activation volume and also through the flow unit immobilization term. The thermal activation model is combined with a temperature dependent Maxwell–Weichert linear viscoelastic model that describes the initial small strain part of the stress strain curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  2. Eyring H (1936) J Chem Phys 4:283

    Article  CAS  Google Scholar 

  3. Bauwens-Crowet C (1973) J Mater Sci 8:968

    Article  CAS  Google Scholar 

  4. Fotheringham D, Cherry BW (1976) J Mater Sci 11:1368

    Article  CAS  Google Scholar 

  5. Bauwens-Crowet C (1976) J Mater Sci 11:1370

    CAS  Google Scholar 

  6. Armstrong RW (1973) (Indian) J Sci Indust Res 32:591

    CAS  Google Scholar 

  7. Zerilli FJ, Armstrong RW (1992) Acta Metall Mater 40:1803

    Article  CAS  Google Scholar 

  8. Li JCM (1982) In: Escaig B, G’Sell C (eds) Plastic deformation of amorphous and semicrystalline materials. Publ les Ulis, Les editions de physique, France, p 29

    Google Scholar 

  9. Rivier N, Gilchrist H (1985) J Non-Cryst Sol 75:259

    Article  CAS  Google Scholar 

  10. Rivier N (1994) Sol State Phenom 35:107

    Google Scholar 

  11. Porter D (1995) Group interaction modeling of polymer properties. Marcel Dekker, New York

    Google Scholar 

  12. Porter D (1997) J Non-Newtonian Fluid Mech 68:141

    Article  CAS  Google Scholar 

  13. Walley SM, Field JE (1994) DYMAT J 1:211

    Google Scholar 

  14. Briscoe BJ, Nosker RW (1985) Polymer Comm 26:307

    Article  CAS  Google Scholar 

  15. Fleck NA, Stronge WJ, Liu JH (1990) Proc Roy Soc Lond A429:459

    Article  Google Scholar 

  16. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. Springer-Verlag, Berlin, p 158

    Chapter  Google Scholar 

  17. Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Illinois, p 43

  18. Johnston WG, Gilman JJ (1959) J Appl Phys 30:129

    Article  CAS  Google Scholar 

  19. Krausz AS, Eyring H (1975) Deformation kinetics. Wiley, New York

    Google Scholar 

  20. Perzyna P (1966) Advances in applied mechanics, vol 9. Academic Press, New York

    Google Scholar 

  21. Bardenhagen SG, Stout MG, Gray GT III (1997) Mech Mater 25:235

  22. Thomas DA (1969) Polymer Eng Sci 9:415

    Article  CAS  Google Scholar 

  23. Sauer JA, Mears DR, Pae KD (1970) Euro Polymer J 6:1015

    Article  CAS  Google Scholar 

  24. Christiansen AW, Baer E, Radcliffe SV (1971) Philos Mag 24:451

    Article  CAS  Google Scholar 

  25. Joseph SH, Duckett RA (1978) Polymer 19:837

    Article  CAS  Google Scholar 

  26. Davis LA, Pampillo CA (1971) J Appl Phys 42:4659

    Article  CAS  Google Scholar 

  27. Pae KD (1977) J Mater Sci 12:1209

    Article  CAS  Google Scholar 

  28. Hu LW, Pae KD (1963) J Franklin Inst 275:491

    Article  Google Scholar 

  29. Escaig B (1978) Ann Phys France 3:207

    Article  CAS  Google Scholar 

  30. Hasan OA, Boyce MC (1993) Polymer 34:5085

    Article  CAS  Google Scholar 

  31. Kauzmann W (1941) Trans Am Inst Min Metall Eng 143:57

    Google Scholar 

  32. Gilman JJ (1973) J Appl Phys 44:675

    Article  CAS  Google Scholar 

  33. Bergstrom Y (1970) Mater Sci Eng 5:193

    Article  CAS  Google Scholar 

  34. Argon AS (1973) Philos Mag 28:839

    Article  CAS  Google Scholar 

  35. Flack HD (1972) J Polymer Sci A-2 10:1799

    Article  CAS  Google Scholar 

  36. Sperati CA, Starkweather HW Jr (1961) Fortschr Hochpolym-Forsch (Adv Polymer Sci) 2:465

  37. Weeks JJ, Clark ES, Eby RK (1981) Polymer 22:1480

    Article  CAS  Google Scholar 

  38. Pistorius CWFT (1964) Polymer 5:315

    Article  CAS  Google Scholar 

  39. Rigby HA, Bunn CW (1949) Nature 164:583

    Article  CAS  Google Scholar 

  40. Bunn CW, Howells ER (1954) Nature 174:549

    Article  CAS  Google Scholar 

  41. McCrum NG (1959) Makromol Chem 34:50

    Article  CAS  Google Scholar 

  42. McCrum NG, Read BE, Williams G (1967) Anelastic and dielelectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  43. Lau S, Wesson JP, Wunderlich B (1984) Macromolecules 17:1102

    Article  CAS  Google Scholar 

  44. Walley SM, Field JE (1994) DYMAT J 1:211, Fig. 20

  45. Walley SM, Field JE, Pope PH, Safford NA (1991) J Phys III France 1:1889, Fig. 161

  46. Gray GT III (1998) In: Khan AS (ed) Proceedings of plasticity ‘99, the seventh intern. symp. on plasticity and its current applications. Neat Press, Fulton, MD

  47. Sauer JA, Pae KD (1974) Colloid Polymer Sci 252:680

    Article  CAS  Google Scholar 

  48. McCrum NG (1959) J Polymer Sci 34:355

    Article  CAS  Google Scholar 

  49. Engeln I, Hengl R, Hinrichsen G (1984) Colloid Polymer Sci 262:780

    Article  CAS  Google Scholar 

  50. Hopkins IL, Hamming RW (1957) J Appl Phys 28:906

    Article  CAS  Google Scholar 

  51. Nagamatsu K, Yoshitomi T, Takemoto T (1958) J Colloid Sci 13:257

    Article  CAS  Google Scholar 

  52. Rae PJ, Dattelbaum DM (2004) Polymer 45:7615

    Article  CAS  Google Scholar 

  53. Rae PJ, Brown EN, Clements BE, Dattelbaum DM (2005) J Appl Phys 98:063521

    Article  Google Scholar 

  54. Rae PJ, Gray GT III, Dattelbaum DM, Bourne NK (2005) In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter – 2004. Amer Inst Phys, Melville NY, p 671

  55. Gray GT III (1997) Methods in materials research. Wiley, New York

  56. Zerilli FJ, Armstrong RW (2000) In: Furnish MD, Chhabildas LC, Hixon RS (eds) Shock compression of condensed matter – 1999. AIP Conf. Proc. CP505, Am Inst Phys, Melville, New York, p 531

  57. Armstrong RW (1973) In: Kochendorfer A (ed) Third international conference on fracture. Verein Deutscher Eisenhuttenleute, Munich, Paper III-421

  58. Bilby BA, Cottrell AH, Swinden KH (1963) Proc Roy Soc Lond A272:304

    Google Scholar 

  59. Berry JP (1964) In: Rosen B (ed) Fracture processes in polymeric solids. Interscience Wiley, New York, p 195

    Google Scholar 

Download references

Acknowledgements

This work was principally supported by the NSWC Independent Research Program with partial support from the Office of Naval Research. Additional partial support was provided by NSWC for Ronald Armstrong. Appreciation is expressed to Stephen Mitchell and Wayne Reed for the NSWC IR support, Chester Clark for the NSWC support, and to Judah Goldwasser for the ONR support. Appreciation is also expressed to G. T. Gray, III for providing us his Hopkinson bar data on PTFE in advance of publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Armstrong.

Appendix A: obtaining parameters for the viscoplastic element

Appendix A: obtaining parameters for the viscoplastic element

Each stress–strain curve not already reported as true stress-true strain is transformed to true stress-true strain with the formulae

$$ \begin{array}{c} \sigma = S (1+ e) \\ \varepsilon = \ln (1+ e) \\ \end{array} $$
(A1)

where S and e are load and elongation, respectively, and σ and ɛ are true stress and true strain, respectively. While this transformation applies only if the flow is volume conserving, the error in applying it to the entire stress–strain curve is generally small. Then, for each curve, a guess is made for the initial linear viscoelastic modulus, and the elastic strain is subtracted from the total strain to obtain the viscoplastic strain. Each true stress–viscoplastic strain curve is then fitted to an equation of the form

$$ \sigma = \sigma_0 + K\sqrt {(1 - e^{- \omega \varepsilon })/\omega } $$
(A2)

and σ0 is obtained from the intercept (or extrapolated intercept) with the σ-axis at zero viscoplastic strain. K and ω could be obtained with a non-linear least squares fit to the data, but a quicker and better result is obtained simply by solving for K and ω by taking two points on the curve, one near the end, at large strain, and one at half that strain.

To obtain B, β 0, and β 1, write

$$ \ln \sigma_0 = \ln B - \beta_1 T \ln ({\dot {\varepsilon}}_{0\beta }/\dot {\varepsilon}) $$
(A3)

where \({\beta_0 = \beta_1 \ln {\dot {\varepsilon}}_{0\beta}}.\) Pick an \({{\dot {\varepsilon}}_{0\beta }},\) and plot \({\ln \sigma_0}\) against \({T \ln ({\dot {\varepsilon }}_{0\beta}/\dot{\varepsilon})}.\) With the best value of \({{\dot {\varepsilon }}_{0\beta}},\) all the data points will lie on or close to a single straight line whose slope is \({-\beta_1}\) and intercept is ln B. Similarly, to obtain B 0, α 0, and α 1, write

$$ \ln K = \ln B_0 - \alpha_1 T \ln ({\dot {\varepsilon}}_{0\alpha }/\dot {\varepsilon}). $$
(A4)

Finally, the dependence of ω on strain rate and pressure may be determined by a linear regression and the pressure dependence of B and B 0 may be determined by a series of linear regressions with differing trial exponents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerilli, F.J., Armstrong, R.W. A constitutive equation for the dynamic deformation behavior of polymers. J Mater Sci 42, 4562–4574 (2007). https://doi.org/10.1007/s10853-006-0550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0550-5

Keywords

Navigation