Skip to main content
Log in

Atomic scale characterization of complex oxide interfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Complex oxides exhibit the most disparate behaviors, from ferroelectricity to high T c superconductivity, colossal magnetoresistance to insulating properties. For these reasons, oxide thin films are of interest for electronics and the emerging field of spintronics. But epitaxial complex oxide ultrathin films and heterostructures can be significantly affected or even dominated by the presence of interfaces and may exhibit intriguing new physical properties quite different from the bulk. A study of the relations between structure and chemistry at the atomic scale is needed to understand the macroscopic properties of such “interface-controlled” materials. For this purpose, the combination of aberration-corrected Z-contrast scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) represents a very powerful tool. The availability of sub-Ångström probes allows a level of unprecedented detail when analyzing not only the interface structure with sensitivity to single atoms, but also the interface chemistry. In this work state of the art STEM-EELS will be applied to the study of different oxide interfaces in heterostructures with titanates, manganites and cuprates based on the perovskite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nellist PD, Chisholm MF, Dellby N, Krivanek OL, Murfitt MF, Szilagi ZS, Lupini AR, Borisevich A, Sides WH, Pennycook SJ (2004) Science 305:1741

    Article  CAS  Google Scholar 

  2. Varela M, Findlay SD, Lupini AR, Christen HM, Borisevich AY, Dellby N, Krivanek OL, Nellist PD, Oxley MP, Allen LJ, Pennycook SJ (2004) Phys Rev Lett 92:095502

    Article  CAS  Google Scholar 

  3. Wang SW, Borisevich AY, Rashkeev SN, Glazoff MV, Sohlberg K, Pennycook SJ, Pantelides ST (2004) Nature Mater 3:143

    Article  CAS  Google Scholar 

  4. Balestrino G, Lavanga S, Medaglia PG, Orgiani P, Tebano A (2002) Phys Rev B 66:094505

    Article  Google Scholar 

  5. Triscone JM, Fischer O (1997) Rep Prog Phys 60:1673

    Article  CAS  Google Scholar 

  6. Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Nature 433:395

    Article  CAS  Google Scholar 

  7. Peña V, Sefrioui Z, Arias D, Leon C, Santamaria J, Martinez JL, te Velthuis SGE, Hoffmann A (2005) Phys Rev Lett 94:057002

    Article  Google Scholar 

  8. Varela M, Lupini AR, van K Benthem, Borisevich AY, Chisholm MF, Shibata N, Abe E, Pennycook SJ (2005) Ann Rev Mat Res 35:539

    Article  CAS  Google Scholar 

  9. Woo H, Tyson TA, Croft M, Cheong S-W, Woick JC (2001) Phys Rev B 63:134412

    Article  Google Scholar 

  10. Kurata H, Colliex C (1993) Phys Rev B 48:2102

    Article  CAS  Google Scholar 

  11. Rask JH, Miner BA, Buseck PR (1987) Ultramicroscopy 21:321

    Article  CAS  Google Scholar 

  12. Krivanek OL, Paterson JH (1990) Ultramicroscopy 32:313

    Article  CAS  Google Scholar 

  13. Varela M et al. In preparation (2006)

  14. Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H, Tokura Y (2004) Science 305:646

    Article  CAS  Google Scholar 

  15. Ohtomo A, Muller DA, Grazul JL, Hwang HY (2002) Nature 419:378

    Article  CAS  Google Scholar 

  16. Oxley MP et al. In preparation (2006)

  17. Pickett W (1989) Rev Mod Phys 61:749

    Article  Google Scholar 

  18. Klie RF, Buban JP, Varela M, Franceschetti A, Jooss C, Zhu Y, Browning ND, Pantelides ST, Pennycook SJ (2005) Nature 435:475

    Article  CAS  Google Scholar 

  19. Varela M, Sefrioui Z, Arias D, Navacerrada MA, Lucia M, Lopez MA de la Torre, Leon C, Loos GD, Sanchez Quesada F, Santamaria J (1999) Phys Rev Lett 83:3936

    Article  CAS  Google Scholar 

  20. Varela M, Arias D, Sefrioui Z, Leon C, Ballesteros C, Pennycook SJ, Santamaria J (2002) Phys Rev B 66:134517

    Article  Google Scholar 

  21. Sefrioui Z, Varela M, Peña V, Arias D, Leon C, Santamaria J, Villegas JE, Martinez JL, Saldarriaga W, Prieto P (2002) Appl Phys Lett 81:4568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Laboratory Directed Research and Development Program of ORNL, managed by UT-Batelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Financial support from the Spanish CICyT and the Fundacion Ramon Areces is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Varela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varela, M., Pennycook, T.J., Tian, W. et al. Atomic scale characterization of complex oxide interfaces. J Mater Sci 41, 4389–4393 (2006). https://doi.org/10.1007/s10853-006-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0150-4

Keywords

Navigation