Skip to main content
Log in

Rod milling and thermal annealing of graphite: Passing the equilibrium barrier

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The change in graphitic carbon structure induced by mechanical milling has been monitored by Raman spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction. It is well known that progressive rod milling of graphite results in an increase in structural disorder. Here, it has been found that a milling time of around 80 h is crucial in producing maximum nanocrystallite formation and this affects the nature of the products formed before or after annealing. At about 80 h equilibrium forms and no further production of nanocrystallites is possible although if additional energy is added amorphous carbon begins to form. Annealing produces different nanographitic carbons depending on the milling conditions because the material may be milled to an equilibrium concentration of nanocrystallites or less, or with additional energy transformed further past equilibrium to new product. Linear morphological structures and trace amounts of carbon nanotubes were found on milling for 80 h and annealing, but concentric layers of carbons were observed in samples milled as long as 240 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Niwase, T. Tanaka, Y. Kakimoto, K. N. Ishihara and P. H. Shingu, Mater. Trans J.I.M. 36 (1995) 282.

    Google Scholar 

  2. T. D. Shen, WQ. Ge, K. Y. Wang, M. X. Quan, J. T. Wang and W. D. Wei, Nanostructed Materials 7 (1996).

  3. J. Tang, W. Zhao, L. Li, A. U. Falster, W. B Simmons and W. L. Zhou, J. Mater Res 11 (1996) 733.

    Google Scholar 

  4. W. L. Zhou, Y. Ikuhara, W. Zhao and J. Tang, Carbon 33 (1995) 1177.

    Google Scholar 

  5. J. B. Aladekoma and R. H. Bragg, Carbon 28 (1990) 897.

    Google Scholar 

  6. M. Nakamizo, H. Honda and M. Inagaki, Carbon 16 (1978) 281.

    Google Scholar 

  7. T. S. Ong and H. Yang, Carbon 38 (2000) 2077.

    Google Scholar 

  8. H. Hermann, T. Schubert, W. Gruner and N. Mattern, Nanostruct. Mater. 8 (1997) 215.

    Google Scholar 

  9. T. Fukunga, K. Nagano, U. Mizutani, H. Wakayama and Y. Fukushima, J. Non-Cryst. Solids 232 (1998) 416.

    Google Scholar 

  10. N. J. Welham and J. S. Williams, Carbon 36 (1998) 1309.

    Google Scholar 

  11. J. Y. Huang, H. Yasuda and H. Mori, Chem. Phys. Lett. 303 (1999) 130.

    Article  Google Scholar 

  12. Z. H. Chen, H. S. Yang, G. T. Wu, M. Wang, F. M. Deng, X. B. Zhang, J. C. Peng and W. Z. Li, J. Crystal Growth 218 (2000) 57.

    Google Scholar 

  13. Y. Chen, L. T. Chadderton, J. S. Williams and G. J. Fitz, Mater. Sci. Forum 343–346 (2000) 63.

    Google Scholar 

  14. Y. Chen, M. J. Conway and G. J. Fitz, Appl. Phys. A (2002) Online publication: DOI: 10.1007/s00339-002-(1986) 3.

  15. Y. Chen, G. J. Fitz, L. T. Chadderton and L. Chaffron, J. Metastable and Nanocrystalline Mater 2–6 (1999) 375.

    Google Scholar 

  16. Y. Chen, G. J. Fitz, L. T. Chadderton and L. Chaffron, Appl. Phys. Lett. 74 (1999) 2782.

    Article  Google Scholar 

  17. L. T. Chadderton and Y. Chen, Phys Lett A 263 (1999) 401.

    Google Scholar 

  18. S. Iijima, Nature 354 (1991) 56.

    Article  Google Scholar 

  19. C. P. Marshall and M. A. Wilson, Carbon 42 (2004) 2179.

    Google Scholar 

  20. H. Connan, B. Reedy, C. P. Marshall and M. A. Wilson, Energy and Fuels 18 (2004) 1607.

    Google Scholar 

  21. J. Kalman, C. Nordlund, H. K. Patney, L. A. Evans and M. A. Wilson, Carbon 39 (2001) 137.

    Google Scholar 

  22. R. Birringer and H. Gleiter, in “Encylopedia of Materials Science,” edited by R. W. Cahn (Pergamon Press, 1988) vol. 1 (Supp.), p. 379.

  23. P. J. F. Harris, Carbon 39 (2001) 909.

    Google Scholar 

  24. F. Tuingstra and J. L. Koenig, J. Chem. Phys. 53 (1970) 1126.

    Article  Google Scholar 

  25. P. Lespade, R. Al-Jishi and M. S. Dresselhaus, Carbon 5 (1982) 427.

    Google Scholar 

  26. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso and J. M. D. Tascon, Carbon 32 (1994) 1523.

    Google Scholar 

  27. J. Dong, W. C. Shen, B. F. Zhang, F. Y. Kang, X. Liu, J. L. Gu, D. S. Li, X. F. Hu and N. P. Chen, J. Phys. Chem. Solids 62 (2001) 2047.

    Google Scholar 

  28. B. Bokhonov and M. Korchagin, J. Alloys and Compounds 333 (2002) 308.

    Google Scholar 

  29. M. Endo, C. Kim, T. Karaki, T. Kasa, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, T. Tamaki and T. Nishimura, Carbon 6 (1998) 1633.

    Google Scholar 

  30. M. A. Wilson, G. S. K. Kannangara, G. Smith, M. Simmons and B. Raguse (Nanotechnology Chapman Hall, Boca Raton USA, 2002) p. 75.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeulders, D.E., Milev, A.S., Kamali Kannangara, G.S. et al. Rod milling and thermal annealing of graphite: Passing the equilibrium barrier. J Mater Sci 40, 655–662 (2005). https://doi.org/10.1007/s10853-005-6303-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6303-z

Keywords

Navigation