Skip to main content
Log in

Fabrication of silica nano wires on the internal perimeter of narrow bore fused silicia tubing by non-isothermal etching

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An method for fabrication of long silica nano wires is presented. The nano structured material is an integral part of the inner surface of narrow bore fused silica capillary tubing. The wire preparation method is based on a hydrothermal action and decomposition of 2-chloro-1,1,2-trifluoroethyl methyl ether at elevated temperature. In our previous work, reproducible nano wire outgrowth could only be accomplished in capillaries with an inner diameter less than10 μ m [1], and the centre of the capillary lumen remained free of wires. In the present article we report on nano wire outgrowth in capillaries with larger inner diameters. These wires are entangled via carbon nucleating particles and stretch across the entire lumen of the capillary. The long nano wire outgrowth was induced by a time dependent, non isothermal etching of the capillaries. Suggested mechanisms for the growth process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Woldegiorgis, M. Curcio, K. Jansson and J. Roeraade, Electrophoresis 2004 in press.

  2. S. M. El-Shall, W. Slack, W. Vann, D. Kane and D. Hanley, J. Phys. Chem-US. 98(12) (1994) 3067.

    Google Scholar 

  3. G.-M. CHOW, P. G. KLEMENS and P. R. STRUTT, J. Appl. Phys. 66(7) (1989) 3304.

    Google Scholar 

  4. D. P. YU, Q. L. HANG, Y. DING, H. Z. ZHANG, Z. G. BAI, J. J. WANG, Y. H. ZOU, W. QIAN, G. C. XION and S. Q. FENG, Appl. Phys. Lett. 73 (1998) 3076.

    Article  Google Scholar 

  5. H. Yang, N. Coombs, I. Sokolov and G. A. Ozin, J. Mater. Chem. 7(7) (1997) 1285.

    Google Scholar 

  6. J. H. Jung, Y. Ono and S. Shinkai, Langmuir 16 (2000) 1643.

    Google Scholar 

  7. S. M. Yang, N. Coombes, I. Sokolov, C. T. Kresge and G. A. Ozin, Adv. Mater. 11 (1999) 52.

    Google Scholar 

  8. H.-P. Lin, C.-Y. Mou and S.-B. Liu, Adv. Mater. 12 (2000) 103.

    Google Scholar 

  9. M. Adachi, T. Harada and M. Harada, Langmuir 16 (2000) 2376.

    Google Scholar 

  10. J. N. Cha, G. D. Stucky, D. E. Morse and T. J. Deming, Nature 403 (2000) 289.

    Google Scholar 

  11. N. Kröger, R. Deutzmann and M. Sumper, Science 286 (1999) 1129.

    Article  CAS  PubMed  Google Scholar 

  12. C. C. Perry and T. Keeling-Tucker, J. Biol. Inorg. Chem. 5 (2000) 537.

    Google Scholar 

  13. R. D. Dandeneau and E. H. Zerenner, J. High Res. Chromatog. 2 (1979) 351.

    Google Scholar 

  14. E. P. Plueddemann, “Silane Coupling Agents” (Plenum, Cop., New York, 1991) p. xi, 253.

    Google Scholar 

  15. M. A. Brook, “Silicon in Organic, Organometallic, and Polymer Chemistry” (Wiley & Sons, New York, 2000), p. xxiv, 680.

    Google Scholar 

  16. E. F. Vansant, P. Van Der Voort and K. C. Vrancken in: “Studies in Surface Science and Catalysis” edited by B. Delmon and J. T. Yates (Elsevier, Amsterdam, 1995) p. 550.

    Google Scholar 

  17. S. Kaupp and H. Wätzig, Electrophoresis 20 (1999) 2566.

    Google Scholar 

  18. R. K. Iler, “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry” (New York Cop, New York, 1979) p. 866.

    Google Scholar 

  19. K. K. Unger, “Porous Silica: Its Properties and use as Support in Column Liquid Chromatography” (Elsevier, Amsterdam, 1976) p. 336.

    Google Scholar 

  20. L. T. Zhuravlev, Colloid. Surf. A 173 (2000) 1.

    Google Scholar 

  21. J. J. Pesek and M. T. Matyska, J. Chromatogr. A 736 (1996) 255.

    Google Scholar 

  22. J. J. A. Pesek, M. T. Matyska and L. Mauskar, J. Chromatogr. A 763 (1997) 307.

    Google Scholar 

  23. J. J. Pesek, M. T. Matyska and S. Cho, J. Chromatogr. A 845 (1999) 237.

    Google Scholar 

  24. K. Tesarik and M. Novotny in “Gas-Chromatographie 1968” edited by H. G. Struppe (Akademie Verlag, Berlin, 1968) p. 575.

    Google Scholar 

  25. J. D. Schieke, N. R. Comins and V. Pretorius, Chromatographia 8 (1975) 354.

    Google Scholar 

  26. Ibid. J. Chromatogr. 112 (1975) 97.

  27. T. R. Doyle and O. Vogle, Monatsh. Chem. 121 (1990) 31.

    Google Scholar 

  28. A. W. Brinkman and J. Carles, Prog. Cryst. Growth Ch. 37 (1998) 169.

    Google Scholar 

  29. A. P. Levitt, in “Whisker Technology” edited by A. P. Levitt (Wiley Interscience, New York, 1970).

    Google Scholar 

  30. E. I. Givargizov, in “Current Topics in Materials Science,” Vol. 2. Crystal Growth and Materials, 1976. 1977, edited by E. Kaldis (North-Holland Publishing Company, 1978) p. 79.

  31. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.

    MATH  Google Scholar 

  32. H. Wang and G. S. Fischman, J. Appl. Phys. 76(3) (1994) 1557.

    Google Scholar 

  33. J. L. Gole, J. D. Stout, W. L. Rauch and Z. L. Wang, Appl. Phys. Lett. 76 (2000) 2346.

    Google Scholar 

  34. C. H. Liang, L. D. Zhang, G. W. Meng, Y. W. Wang and Z. Q. Chu, J. Non-Cryst. Solids 277 (2000) 63.

    Article  Google Scholar 

  35. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun and J. J. Du, Chem. Phys. Lett. 336 (2001) 53.

    Google Scholar 

  36. Z. L. Wang, G. P. Ruiping, J. L. Gole and J. D. Stout, Adv. Mater. 12 (2000) 1938.

    Google Scholar 

  37. D.-T. Liang and D. W. Readey, J. Amer. Ceram. Soc. 70(8) (1987) 570.

    Google Scholar 

  38. M. Wong, M. M. Moslehi and D. W. Reed, J. Electrochem. Soc. 138 (1991) 1799.

    Google Scholar 

  39. H. Habuka and T. Otsuka, Jpn. J. Appl. Phys. 37 (1998) 6123.

    Google Scholar 

  40. M. Jun-Ru, S. Kuo.Hsiung, E. D. Wolf and T. E. Everhart, J. Vac. Sci. Technol. A 19 (1981) 1385.

    Google Scholar 

  41. C. R. Helms and B. E. Deal, J. Vac. Sci. Technol. A 10(4) (1992) 806.

    Google Scholar 

  42. P. A. M. van der Heide, M. J. Baan Hofman and H. J. Ronde, J. Vac. Sci. Technol. 7(3) (1989) 1719.

    Google Scholar 

  43. D. F. Weston and R. J. Mattox, J. Vac. Sci. Technol. 17 (1980) 466.

    Google Scholar 

  44. J. R. Moyer, J. Am. Ceram. Soc. 79(11) (1996) 2965.

    Google Scholar 

  45. V. I. Rodin, V. A. Zaitsev and V. B. Gromov, Tr. Mosk. Khim-Tekhnol. Inst. (Russian) 71 (1972) 77.

    Google Scholar 

  46. Z. G. Smirnova, N. Z. Nikitina, V. V. Illarionov and A. Mazlovskii, Zh. Prikl. Khim. (Russian) 40 (1967) 1667.

    Google Scholar 

  47. J. Takagi and M. Suwa, Asahi Garasu Kenkyu Hokoku (Japanese) 17 (1967) 99.

    Google Scholar 

  48. D. Lespiaux, F. Langlais, R. Naslain, S. Schamm and J. Sevely, J. Mater. Sci. 30 (1995) 1500.

    Google Scholar 

  49. P. J. Goodhew, J. Humphreys and R. Beanland (Taylor & Francis, London, 2001), pp. 30, 169.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roeraade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woldegiorgis, A., Jansson, K. & Roeraade, J. Fabrication of silica nano wires on the internal perimeter of narrow bore fused silicia tubing by non-isothermal etching. J Mater Sci 40, 583–589 (2005). https://doi.org/10.1007/s10853-005-6292-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6292-y

Keywords

Navigation