Skip to main content
Log in

Preparation of alumina films by the sol-gel method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review describes our study on preparation of alumina films by a sol-gel process and their several applications that have been investigated since 1986. Alumina films were prepared from alkoxide or inorganic salt. Both as-prepared alumina films were transparent in ultraviolet, visible and near infrared regions. The alumina from inorganic salt (inorganic alumina) was structureless even after annealed at 300–700°C in air, while the alumina from alkoxide (alkoxide alumina) was in pseudo-boehmite at an annealing temperature lower than 400°C and was in γ- or δ-type at 400–700°C. Both alumina films became opaque after annealed at temperatures above 1000°C. The inorganic alumina film annealed at 800°C showed a gas permeability that was influenced by physico-chemical properties of penetrant and alumina. Composite films of alumina and poly(vinyl alcohol) (PVA) were hydrophilic but insoluble in water, and removal of PVA from the composite films by annealing at 600°C led to formation of transparent alumina films. Such properties enabled us to use a counter diffusion method for fabricating γ-Fe2O3-doped alumina films. Alumina films doped with organic dyes such as laser dyes, hole-burning dyes and non-linear optical dyes, which were fabricated by gelation of dye-added alumina sol, exhibited laser emission, hole-spectra and second- or third-harmonic generation properties, respectively. Hydrogenation of alkene was catalyzed by Ni nanoparticles doped alumina films that were prepared by gelation of Ni2+ solution-added alumina sol and annealing the Ni2+-doped alumina gel in hydrogen gas. Nonlinear optical properties were observed for alumina films doped with CdS, Au and Ag nanoparticles, which were fabricated by gelation of Cd2+, HAuCl4 and AgNO3 solution-added alumina sols and annealing the Cd2+-doped alumina gel in H2S gas and the Ag+- and Au3+-doped alumina gels in H2 gas. Rare earth metal ion-doped alumina films, which were prepared by gelation of rare earth metal ion solution-added alumina sol and annealed the ion-doped alumina gel, exhibited not only normal luminescence but also up-conversion emission, energy transfer type luminescence and long lasting luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Sol-Gel Science and Technology,” edited by M. A. Aegerter, M. Jafelicci Jr., D. F. Souza and E. D. Zanotto (World Scientific Pub., London, 1989).

    Google Scholar 

  2. C. J. BRINKER and G. W. SCHERER, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing” (Academic Press, Boston, 1990).

    Google Scholar 

  3. “Sol-Gel Processing and Applications,” edited by Y. A. Attia (Plenum Press, New York, 1994).

    Google Scholar 

  4. “Sol-Gel Optics: Processing and Applications,” edited by L. C. Klein (Kluwer Academic Publishers, Boston, 1994).

    Google Scholar 

  5. “Biochemical Aspects of Sol-Gel Science and Technology: A Special Issue of the Journal of Sol-Gel Science and Technology,” edited by D. Avnir and S. Braun (Kluwer Academic Publishers, Boston, 1996).

    Google Scholar 

  6. A. C. PIERRE, “Introduction to Sol-Gel Processing” (Kluwer Academic Publishers, Boston, 1998).

    Google Scholar 

  7. Y. KUROKAWA, T. SHIRAKAWA, S. SAITO and N. YUI, J. Mater. Sci. Lett. 5 (1986) 1070.

    Google Scholar 

  8. F. SUZUKI, K. ONOZATO, J. YANAGINUMA and Y. KUROKAWA, Koubunshi Ronbunsyu 43 (1986) 767.

    Google Scholar 

  9. F. SUZUKI, K. ONOZATO and Y. KUROKAWA, J. Non-Cryst. Solids 94 (1987) 160.

    Google Scholar 

  10. J.-I. ISHIYAMA, T. SHIRAKAWA, Y. KUROKAWA, S. IMAIZUMI and S. SAITO, Nippon Kagaku Kaishi (1987) 1964.

  11. J.-I. ISHIYAMA, Y. KUROKAWA, T. NAKAYAMA and S. IMAIZUMI, Appl. Cat. 40 (1988) 139.

    Google Scholar 

  12. Y. KOBAYASHI, Y. KUROKAWA, Y. IMAI and S. MUTO, J. Non-Cryst. Solids 105 (1988) 198.

    Google Scholar 

  13. Y. KOBAYASHI, Y. IMAI and Y. KUROKAWA, J. Mater. Sci. Lett. 7 (1988) 1148.

    Google Scholar 

  14. H. TANAKA, J. TAKAHASHI, J. TSUCHIYA, Y. KOBAYASHI and Y. KUROKAWA, J. Non-Cryst. Solids 109 (1989) 164.

    Google Scholar 

  15. H. SASAKI, Y. KOBAYASHI, S. MUTO and Y. KUROKAWA, J. Amer. Ceram. Soc. 73 (1990) 453.

    Google Scholar 

  16. F. SUZUKI, K. ONOZATO and Y. KUROKAWA, J. Appl. Polym. Sci. 39 (1990) 371.

    Google Scholar 

  17. H. KAWAGUCHI, T. MIYAKAWA, N. TANNO, Y. KOBAYASHI and Y. KUROKAWA, Jpn. J. Appl. Phys. 30 (1991) 280.

    Google Scholar 

  18. Y. KOBAYASHI, H. SASAKI, S. MUTO, S. YAMAZAKI and Y. KUROKAWA, Thin Solid Films 200 (1991) 321.

    Google Scholar 

  19. Y. KOBAYASHI, S. NAKATA and Y. KUROKAWA, Sekiyu Gakkaishi 34 (1991) 197.

    Google Scholar 

  20. Y. KOBAYASHI, S. MUTO, H. SASAKI and Y. KUROKAWA, J. Surf. Sci. Soc. Jpn. 12 (1991) 339.

    Google Scholar 

  21. Y. KOBAYASHI, S. YAMAZAKI, Y. KUROKAWA, T. MIYAKAWA and H. KAWAGUCHI, J. Mater. Sci.: Mater. Elec. 2 (1992) 20.

    Google Scholar 

  22. H. OHTA and Y. KUROKAWA, J. Mater. Sci. Lett. 11 (1992) 869.

    Google Scholar 

  23. Y. KOBAYASHI, S. MUTO, A. MATSUZAKI and Y. KUROKAWA, Thin Solid Films 213 (1992) 126.

    Google Scholar 

  24. Y. KAKEGAWA, Y. KOBAYASHI, S. MUTO and Y. KUROKAWA, Nippon Kagaku Kaishi (1992) 1257.

  25. Y. KOBAYASHI, Y. KAKEGAWA, Y. KUROKAWA, K. SUZUKI and Y. OKA, J. Ceram. Soc. Jpn. 101 (1993) 69.

    Google Scholar 

  26. Y. KUROKAWA, Y. KOBAYASHI and S. NAKATA, Hetergen. Chem. Rev. 1 (1994) 309.

    Google Scholar 

  27. Y. HOSOYA, S. MUTO, T. OHSUGI and Y. KUROKAWA, Thin Solid Films 256 (1995) 4.

    Google Scholar 

  28. Idem., ibid. 283 (1996) 221.

    Google Scholar 

  29. Y. HOSOYA, T. SUGA, T. YANAGAWA and Y. KUROKAWA, J. Appl. Phys. 81 (1997) 1475.

    Google Scholar 

  30. T. YANAGAWA, Y. KUROKAWA, H. KASAI and H. NAKANHISHI, Opt. Comm. 137 (1997) 103.

    Google Scholar 

  31. Y. KOBAYASHI, D. KAWASHIMA and A. TOMITA, Chem. Mater. 9 (1997) 1887.

    Google Scholar 

  32. S. MUTO, T. KUBO, Y. KUROKAWA and K. SUZUKI, Thin Solid Films 322 (1998) 233.

    Google Scholar 

  33. Y. KUROKAWA, T. SUGA, S. NAKATA, T. IKOMA and S. TERO-KUBOTA, J. Mater. Sci. Lett. 17 (1998) 275.

    Google Scholar 

  34. Y. KUROKAWA, T. ISHIZAKA, T. IKOMA and S. TERO-KUBOTA, Chem. Phys. Lett. 287 (1998) 737.

    Google Scholar 

  35. T. ISHIZAKA and Y. KUROKAWA, J. Appl. Phys. 90 (2001) 243.

    Google Scholar 

  36. Idem., ibid. 90 (2001) 2257.

    Google Scholar 

  37. Idem., J. Lumines. 92 (2001) 57.

    Google Scholar 

  38. T. ISHIZAKA, Y. KUROKAWA, T. MAKINO and Y. SEGAWA, Opt. Mater. 15 (2001) 293.

    Google Scholar 

  39. T. ISHIZAKA, S. MUTO and Y. KUROKAWA, Opt. Comm. 190(2001) 385.

    Google Scholar 

  40. T. ISHIZAKA, R. NOZAKI and Y. KUROKAWA, J. Phys. Chem. Solids 63 (2002) 613.

    Google Scholar 

  41. T. ISHIZAKA, S. TERO-KUBOTA, Y. KUROKAWA and T. IKOMA, ibid. 64 (2003) 801.

    Google Scholar 

  42. T. ISHIZAKA, Y. KOBAYASHI and Y. KUROKAWA, J. Mater. Sci. 38 (2003) 1239.

    Google Scholar 

  43. B. E. YOLDAS, Amer. Ceram. Soc. Bull. 54 (1975) 286.

    Google Scholar 

  44. E. V. BALLOU and T. WYDEVEN, J. Colloid Interf. Sci. 41 (1972) 198.

    Google Scholar 

  45. A. F. M. LEENAARS and A. K. BURGGRAAF, J. Membr. Sci. 24 (1985) 261.

    Google Scholar 

  46. B. E. YOLDAS, J. Non-Cryst. Solids 147/148 (1992) 614.

    Google Scholar 

  47. C. E. JONES and D. EMBREE, J. Appl. Phys. 47 (1976) 5365.

    Google Scholar 

  48. V. N. BAGRARTASHVIL, V. A. RADTSIG, A. O. RYBALTOVSKII, P. V. CHERNOV, S. S. ALIMPIEV and Y. O. SIMANOVSKII, J. Non-Cryst. Solids 180 (1995) 221.

    Google Scholar 

  49. G. FU and L. F. NAZAR, Chem. Mater. 3 (1991) 602.

    Google Scholar 

  50. J. T. KLOPROGGE, D. SEYKENS, J. B. H. JANSEN and J. W. GEUS, J. Non-Cryst. Solids 152 (1993) 207.

    Google Scholar 

  51. S. ACOSTA, R. J. P. CORIN, D. LECLERCQ, P. LEFÉVRE, P. H. MUTIN and A. VIOU, ibid. 170 (1994) 234.

    Google Scholar 

  52. G. KUNATH-FANDREI, T. J. BASTOW, J. S. HALL, C. JåGER and M. E. SMITH, J. Phys. Chem. 99 (1995) 15138.

    Google Scholar 

  53. M. GUGLIELMI, J. Sol-Gel Sci. Tech. 8 (1997) 443.

    Google Scholar 

  54. M. SIMÕES, O. B. G. ASSIS and L. A. AVACA, J. Non-Cryst. Solids 273 (2000) 159.

    Google Scholar 

  55. D. C. L. VASCONCELOS, J. A. N. CARVALHO, M. MANTEL and W. L. VASCONCELOS, ibid. 273 (2000) 135.

    Google Scholar 

  56. L. CAMPANIELLO, P. BERTHET, F. D’YVOIRE and A. REVCOLEVSCHI, J. Mater. Res. 10 (1995) 297.

    Google Scholar 

  57. N. ÖZER, J. P. CRONIN, Y.-J. YAO and A. P. TOMSIA, Solar Energy Mater. Solar Cells 59 (1999) 355.

    Google Scholar 

  58. R. HAUK, G. H. FRISCHAT and K. RUPPERT, Glastech. Ber. Glass Sci. Technol. 72 (1999) 386.

    Google Scholar 

  59. J. MASALSKI, J. GLUSZEK, J. ZABRESHI, K. NITSCH and P. GLUSZEK, Thin Solid Films 349 (1999) 186.

    Google Scholar 

  60. H. van OLEPHEN, “An Introduction to Clay Colloid Chemistry” (Wiley, New York, 1977).

    Google Scholar 

  61. A. R. GREENBERG and I. LAMEL, J. Polym. Sci. Polym. Chem. Ed. 15 (1977) 2137.

    Google Scholar 

  62. T. HINO, K. MOCHIDA and S. OKUMURA, Kobunshi Ronbunsyu 40 (1983) 225.

    Google Scholar 

  63. Y. KUROKAWA, Desalination 41 (1982) 115.

    Google Scholar 

  64. F. SUZUKI, K. ONOZATO, K. Haneda and Y. KUROKAWA, Membrane 9 (1984) 49.

    Google Scholar 

  65. K. ONOZATO and Y. KUROKAWA, Koubunshi Ronbunsyu 42 (1985) 29.

    Google Scholar 

  66. K. ONOZATO, F. SUZUKI, K. HANADA and Y. KUROKAWA, ibid. 42 (1985) 219.

    Google Scholar 

  67. Y. KUROKAWA and K. HANADA, J. Polym. Sci. Part C 25 (1987) 369.

    Google Scholar 

  68. J.-I. ISHIYAMA, T. SHIRAKAWA, Y. KUROKAWA, S. IMAIZUMI and S. SAITO, Nippon Kagaku Kaishi (1987) 1964.

  69. J.-I. ISHIYAMA, T. SHIRAKAWA, Y. KUROKAWA and S. IMAIZUMI, Angew. Makromol. Chem. 156 (1988) 179.

    Google Scholar 

  70. Y. KUROKAWA, M. NISHIDA, H. SASAKI and Y. KOBAYASHI, 3rd SPSJ Inter. Poly. Conf. (1990) 147.

  71. H. SASAKI, Y. KOBAYASHI and Y. KUROKAWA, Koubunshi Ronbunsyu 47 (1990) 935.

    Google Scholar 

  72. Y. KUROKAWA and Y. Imai, J. Membr. Sci. 55 (1991) 227.

    Google Scholar 

  73. S. YAMAZAKI and Y. KUROKAWA, Polym. Commun. 32 (1991) 524.

    Google Scholar 

  74. M. NISHIDA, J.-I. ISHIYAMA and Y. KUROKAWA, React. Polym. 14 (1991) 205.

    Google Scholar 

  75. Y. KUROKAWA, Y. IMAI, Y. SASAKI and T. MAEDA, Anal. Biochem. 209 (1993) 247.

    Google Scholar 

  76. Y. KUROKAWA and Y. IMAI, Koubunshi Ronbunsyu 30 (1993) 451.

    Google Scholar 

  77. H. ISHIKAWA, Y. IMAI and Y. KUROKAWA, Vibrat. Spectr. 8 (1995) 445.

    Google Scholar 

  78. Y. KUROKAWA, J. Membr. Sci. 114 (1996) 1.

    Google Scholar 

  79. Y. IMAI, Y. KUROKAWA, M. HARA and M. FUKUSHIMA, Spectrochimica Acta Part A 53 (1997) 1697.

    Google Scholar 

  80. Y. KUROKAWA, Y. IMAI and Y. TAMAI, The Analyst 122 (1997) 941.

    Google Scholar 

  81. Y. KOBAYASHI, D. KAWASHIMA and A. TOMITA, Chem. Mater. 9 (1997) 1887.

    Google Scholar 

  82. Y. IMAI, Y. TAMAI and Y. KUROKAWA, J. Sol-Gel Sci. Tech. 11 (1998) 273.

    Google Scholar 

  83. D. AVNIR, D. LEVY and R. REISFELD, J. Phys. Chem. 88 (1984) 5956.

    Google Scholar 

  84. D. AVNIR, V. R. KAUFMAN and R. REISFELD, J. Non-Cryst. Solids 74 (1985) 396.

    Google Scholar 

  85. V. R. KAUFMAN, D. AVNIR, D.-P. ROJANSKI and D. HUPPERT, ibid. 99 (1988) 379.

    Google Scholar 

  86. T. FUJII, A. ISHII and M. ANPO, J. Photochem. Photobio. A.: Chem. 54 (1990) 231.

    Google Scholar 

  87. A. MAKISHIMA and T. TANI, Commun. J. Amer. Ceram. Soc. 69 (1986) 72.

    Google Scholar 

  88. B. S. DUNN and J. I. ZINK, J. Mater. Chem. 1 (1991) 903.

    Google Scholar 

  89. “Dye Lasers,” 2nd ed., edited by F. P. Schafer (Springer, Berlin, 1977).

    Google Scholar 

  90. S. MUTO, H. UCHIDA, K. NAKAMURA, C. ITOH and H. INABA, Trans. Inst. Electron. Commun. Eng. Jpn. E69 (1986) 376.

    Google Scholar 

  91. R. M. MACFARLANE and R. M. SHELBY, J. Lumin. 36 (1987) 179.

    Google Scholar 

  92. W. E. MOERNER and W. LENTH, in “Persistent Hole-Burning: Science and Applications,” edited by W. E. Moerner (Springer, New York, 1987) Chap. 7 and other chapters therein.

    Google Scholar 

  93. A. R. GUTIERREZ, J. FRIEDLICH, D. HAARER and H. WOLFRUM, IBM J. Res. Develop. 26 (1982) 198.

    Google Scholar 

  94. H. TANAKA, J. TAKAHASHI, J. TSUCHIYA and K. KAWASAKI, 2nd SPSJ Int. Polymer Conf., Tokyo (Aug. 1986) 130p-1c-18.

  95. Idem., Meeting Jpn. Soc. Appl. Phys. (Oct. 1986) 218P-29a-ze-9.

  96. Idem., Meeting Chem. Soc. Jpn. (Oct. 1987) 399p-2A-29.

  97. J. FRIEDLICH and D. HAARER, in “Optical Spectroscopy of Glasses,” edited by I. Zschokke (Reidel, Dordrecht, 1986) p. 149.

    Google Scholar 

  98. T. NISHI, K. ARISHIMA, H. TABEI and H. HIRATSUKA, Jpn. J. Appl. Phys. 27 (1988) 225.

    Google Scholar 

  99. “Amorphous Solids—Low Temperature Properties,” edited by W. A. Phillips (Springer, New York, 1981).

    Google Scholar 

  100. R. JANKOWIAK, L. SHU, M. J. KENNY and G. J. SMALL, J. Lumin. 36 (1987) 293.

    Google Scholar 

  101. J. L. BREDAS, C. ADANT, P. TOCKY and A. PERSOONS, Chem. Rev. 94 (1994) 243 and references cited therein.

    Google Scholar 

  102. H. L. HAMPSH, J. YANG, G. K. WONG and J. M. TORKELSON, Polym. Commun. 30 (1989) 40.

    Google Scholar 

  103. S. COOPER and P. K. DUTTA, J. Phys. Chem. 94 (1990) 114.

    Google Scholar 

  104. L. C. KLEIN, Annu. Rev. Mater. Sci. 23 (1993) 437.

    Google Scholar 

  105. T. M. CHE, R. V. CORNEY, G. KHANARIAN, R. A. KEOSIUAN and M. BORZO, J. Non-Cryst. Solids 102(1988) 280.

    Google Scholar 

  106. D. Y. CHEN, N. OKAMOTO, T. SASAKI, S. TASAKA and R. MATSUSHITA, IEICE Trans. E 74 (1991) 946.

    Google Scholar 

  107. L. LEDOUX, J. ZYSS, A. MIGUS, J. ETCHEPARE, G. GRILLON and A. ANTONETTI, Appl. Phys. Lett. 48 (1986) 1564.

    Google Scholar 

  108. S. K. KURTZ, in “Laser Handbook”, edited by F. T. Arecchi and E. O. Shulz-Dubois (North-Holland, Amsterdam, 1972) Vol. 1, p. 923.

    Google Scholar 

  109. J. JERPHAGOV and S. K. KURTZ, Phys. Rev. B 1 (1970) 1739.

    Google Scholar 

  110. C. HALVORSON, T. W. HAGLER, D. MOSES, Y. KAO and A. J. HEEGER, Synth. Met. 55–57 (1993) 3961.

    Google Scholar 

  111. L. BRUS, J. Phys. Chem. 90 (1986) 2555.

    Google Scholar 

  112. A. I. EKIMOV, A. L. EFROS and A. A. ONUSHCHENKO, Solid State Commun. 88 (1993) 947.

    Google Scholar 

  113. K. KIMURA, Z. Phys. D 11 (1989) 327.

    Google Scholar 

  114. A. HENGLEIN, Chem. Rev. 89 (1989) 1861.

    CAS  Google Scholar 

  115. Z. ZHANG, R. C. PATEL, R. KOTHARI, C. P. JOHNSON, S. E. FRIBERG and P. A. AIKENS, J. Phys. Chem. B 104 (2000) 1176.

    Google Scholar 

  116. G. PANG, S. CHEN, Y. ZHU, O. PALCHIK, Y. KOLTYPIN, A. ZABAN and A. GEDANKEN, ibid. 105 (2001) 4647.

    Google Scholar 

  117. F. GARCÝA-SANTAMAÝA, V. SALGUEIRIÑO-MACEIRA, C. LÓPEZ and L. M. LIZ-MARZÁN, Langmuir 18 (2002) 4519.

    Google Scholar 

  118. C. CHEN, T. TAKEZAKO, K. YAMAMOTO, T. SERIZAWA and M. AKASHI, Colloids Surf. A: Physicochem. Eng. Aspects 169 (2000) 107.

    Google Scholar 

  119. J. N. ARMOR, E. J. CARSON and P. M. ZAMHRI, Appl. Catal. 19 (1985) 339.

    Google Scholar 

  120. H. HIRAI, Y. NAKAO and N. TOSHIMA, J. Macromol. Sci.-Chem. A12 (1978) 1117.

    Google Scholar 

  121. A. UENO, H. SUZUKI and Y. KOTERA, J. Chem. Soc., Faraday Trans. 1. 79 (1983) 127.

    Google Scholar 

  122. N. FINLAYSON, W. C. BANYAI, E. M. WRIGHT, C. T. SEATON, G. I. STEGMAN, T. J. CULLEN and C. N. IRONSIDE, Appl. Phys. Lett. 53 (1988) 1144.

    Google Scholar 

  123. L. H. ACIOLI, A. S. L. GOMES and J. R. RIOSLEITE, ibid. 53 (1988) 1788.

    Google Scholar 

  124. A. NAKAMURA, H. YAMADA and T. TOKIZAKI, Phys. Rev. B 40 (1989) 8585.

    Google Scholar 

  125. S. C. DAVIS and K. J. KLABUNDE, Chem. Rev. 82 (1982) 153.

    Google Scholar 

  126. E. J. HEILWEIL and R. M. HOCHSTRASSER, J. Chem. Phys. 28 (1985) 4762.

    Google Scholar 

  127. G. SCHMID, Chem. Rev. 92 (1992) 1709.

    Google Scholar 

  128. R. LAMBER, S. WETJEN, G. SCHULTZ-EKLOFF and A. BAALMANN, J. Phys. C 99 (1995) 13834.

    Google Scholar 

  129. R. H. DOREMU, J. Chem. Phys. 40 (1964) 2389.

    Google Scholar 

  130. U. KREIBIG and L. GENZEL, Surf. Sci. 156 (1985) 678.

    Article  Google Scholar 

  131. I. FARBMAN, O. LEV and S. EFRIMA, J. Chem. Phys. 96 (1992) 6477.

    Google Scholar 

  132. S. UNDERWOOD and P. MULVANEY, Langmuir 10 (1994) 3427.

    Google Scholar 

  133. L. M. LIZ-MARZÁN, M. GIERSIG and P. MULVANEY, ibid. 12 (1996) 4329.

    Google Scholar 

  134. H. HÖVEL, S. FRITZ, A. HILGER, U. KREIBIG and M. VOLLMER, Phys. Rev. B 48 (1993) 18178.

    Google Scholar 

  135. M. XU and M. J. DIGNAM, J. Chem. Phys. 96 (1992) 3370.

    Google Scholar 

  136. P. ALEMANY, R. S. BOORSE J. M. BURLITCH and R. HOFFMANN, J. Phys. C 97 (1993) 8464.

    Google Scholar 

  137. S. FEDRIGO, W. HAEBICH and J. BUTTET, Phys. Rev. B 47 (1993) 10706.

    Article  Google Scholar 

  138. J. TIGGESBÁUMKER, L. KÖLLER, K.-H. M.-BROEL and A. LIEBSCH, ibid. A 48 (1993) R1749.

    Google Scholar 

  139. V. V. KRESIN, ibid. B 51 (1995) 1844.

    Google Scholar 

  140. G. COCCO, S. ENZO, G. FAGHERAZZI, L. SCHIFFINI, I. W. BASSI, G. VLAIC, S. GALVAGNO, G. GALVAGNO and G. PARRAVANO, J. Phys. Chem. 83 (1979) 2527.

    Google Scholar 

  141. K. S. LIANG, W. R. SALANECK and L. A. AKSAY, Solid State Commun. 19 (1976) 329.

    Google Scholar 

  142. L. OBERLI, R. MONOT, H. J. MATHIEU, D. LANDOLT and J. BUTTET, Surf. Sci. 106 (1981) 301.

    Google Scholar 

  143. F. HACHE, D. RICARD and C. FLYTZANIS, J. Opt. Soc. Am. B 3 (1986) 1647.

    Google Scholar 

  144. F. Hache D. Ricard C. Flytzanis U. Kreibig (1988) Appl. Phys. A 47 347

    Google Scholar 

  145. F. HACHE, D. RICARD, C. FLYTZANIS and U. KREIBIG, Appl. Phys. A 47 (1988) 347; G. N. VAN DEN HPVEN, E. SNOEKS, A. POLMAN, J. W. M. VAN UFFELEN, Y. S. OCI and M. K. SMIT, Appl. Phys. Lett. 62 (1993) 3065.

    Google Scholar 

  146. C. K. RYU, H. CHOI and K. KIM, ibid. 66 (1996) 2496.

    Google Scholar 

  147. W. XU, S. DAI, L. M. TOTH and G. D. DEL CUL, J. Non-Cryst. Solids 194 (1995) 235.

    Google Scholar 

  148. M. DEJNEKA, E. SITZER and R. E. RIMAN, ibid. 202 (1996) 23.

    Google Scholar 

  149. V. C. COSTA, M. J. LOCHHEAD and K. L. BRAY, Chem. Mater. 8 (1996) 783.

    Google Scholar 

  150. J. JIN, S. SAKIDA, T. YOKO and M. NOGAMI, J. Non-Cryst. Solids 262 (2000) 183.

    Google Scholar 

  151. A. PATRA, R. REISFELD and H. MINTI, Mater. Lett. 37 (1998) 325.

    Google Scholar 

  152. T. FUJIYAMA, T. YOKOYAMA, M. HORI and M. SASAKI, J. Non-Cryst. Solids 135 (1991) 198.

    Google Scholar 

  153. M. YAMAZAKI, Y. YAMAMOTO, S. NAGAHAMA, N. SAWANOBORI, M. MIZUGUCHI and H. HOSONO, ibid. 241 (1998) 71.

    Google Scholar 

  154. Idem., J. Phys.: Condens. Matter 10 (1998) 954.

    Google Scholar 

  155. J. QIU, M. KAWASAKI, K. TANAKA, Y. SHIMIZUGAWA and K. HIRAO, J. Phys. Chem. Solids 59 (1998) 1521.

    Google Scholar 

  156. J. QIU, K. HIRANO, Solid State Commun. 106 (1998) 795.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, Y., Ishizaka, T. & Kurokawa, Y. Preparation of alumina films by the sol-gel method. J Mater Sci 40, 263–283 (2005). https://doi.org/10.1007/s10853-005-6080-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6080-8

Keywords

Navigation