Skip to main content
Log in

Effect of boundary plane on the atomic structure of [0001] Σ 7 tilt grain boundaries in ZnO

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The atomic structure of [0001] Σ 7 tilt grain boundaries with {\(12\bar{3}0\)}‖ {\(12\bar{3}0\)}, {\(14\bar{5}0\)}‖ {\(14\bar{5}0\)}, and {\(10\bar{1}0\)}‖ {\(35\bar{8}0\)} boundary planes in ZnO was investigated through high-resolution transmission electron microscopy observation of fiber-textured thin films and atomistic calculations. These boundaries were found to comprise three kinds of common structural units that are characterized by fourfold- to eightfold-coordinated channels along the [0001] direction in contrast to sixfold-coordinated channels in wurtzite structure. The boundary structural units are very similar to the multiple core structures of edge dislocations with Burgers vectors of 1/3 < \(11\bar{2}0\)> . Transformation between two of the three configurations can easily occur through an atom flipping corresponding to dislocation glide. Depending on the orientation of boundary planes with respect to the Burgers vectors, the dislocation-like units exhibit straight or zigzag arrangements with periodicities corresponding to the Σ 7 misorientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. L. KRIVANEK, S. ISODA and K. KOBAYASHI, Philos. Mag. 36 (1977) 931.

    Google Scholar 

  2. K. L. MERKLE and D. J. SMITH, Phys. Rev. Lett. 59 (1987) 2887.

    Article  PubMed  Google Scholar 

  3. F. ERNST, M. W. FINNIS, D. HOFMANN, T. MUSCHIK, U. SCHÖNBERGER, U. WOLF and M. METHFESSEL, ibid. 69 (1992) 620.

    Article  PubMed  Google Scholar 

  4. M. M. MCGIBBON, N. D. BROWNING. M. F. CHISHOLM, A. J. MCGIBBON, S. J. PENNYCOOK, V. RAVIKUMAR and V. P. DRAVID, Science 266 (1994) 102.

    Google Scholar 

  5. N. D. BROWNING, J. P. BUBAN, H. O. MOLTAJI, S. J. PENNYCOOK, G. DUSCHER, K. D. JOHNSON, R. P. RODRIGUES and V. P. DRAVID, Appl. Phys. Lett. 74 (1999) 2638.

    Article  Google Scholar 

  6. D. M. DUFFY and P. W. TASKER, Phil. Mag. A 47 (1983) 817.

    Google Scholar 

  7. D. WOLF, J. Am. Ceram. Soc. 67 (1984) 1.

    Google Scholar 

  8. M. KOHYAMA, Modelling Simul. Mater. Sci. Eng. 10 (2002) R31.

    Article  Google Scholar 

  9. I. DAWSON, P. D. BRISTOWE, M. H. LEE, M. C. PAYNE, M. D. SEGALL and J. A. WHITE, Phys. Rev. B 54 (1996) 13727.

    Article  Google Scholar 

  10. S. D. MO, W. Y. CHING, M. F. CHISHOLM and G. DUSCHER, ibid. 60 2416 (1999).

    Article  Google Scholar 

  11. S. FABRIS and C. ELSÄSSER, ibid. 64 (2001) 245117.

    Google Scholar 

  12. F. OBA, I. TANAKA, S. R. NISHITANI, H. ADACHI, B. SLATER and D. H. GAY, Phil. Mag. A 80 (2000) 1567.

    Google Scholar 

  13. F. OBA, S. R. NISHITANI, H. ADACHI, I. TANAKA, M. KOHYAMA and S. TANAKA, Phys. Rev. B 63 (2001) 045410.

    Article  Google Scholar 

  14. J. M. CARLSSON, B. HELLSING, H. S. DOMINGOS and P. D. BRISTOWE, J. Phys.: Condens. Matter 13 (2001) 9937.

    Article  Google Scholar 

  15. T. HÖCHE, P. R. KENWAY, H.-J. KLEEBE, M. RÜHLE and P. A. MORRIS, J. Amer. Ceram. Soc. 77 (1994) 339.

    Article  Google Scholar 

  16. U. DAHMEN, S. PACIORNIK, I. G. SOLORZANO and J. B. VANDERSANDE, Inter. Sci. 2 (1994) 125.

    Google Scholar 

  17. N. KISELEV, F. SARRAZIT, E. A. STEPANTSOV, E. OLSSON, T. CLAESON, V. I. BONDARENKO, R. C. POND and N. A. KISELEV, Phil. Mag. A 76 (1997) 633.

    Google Scholar 

  18. Y. IKUHARA, T. WATANABE, T. SAITO, H. YOSHIDA and T. SAKUMA, Mater. Sci. Forum 284-286 (1999) 273.

    Google Scholar 

  19. T. YAMAMOTO, K. HAYASHI, Y. IKUHARA and T. SAKUMA, J. Amer. Ceram. Soc. 83 (2000) 1527.

    Google Scholar 

  20. E. C. DICKEY, X. D. FAN and S. J. PENNYCOOK, ibid. 84 (2001) 1361.

    Google Scholar 

  21. S. NUFER, A. G. MARINOPOULOS, T. GEMMING, C. ELSÄSSER, W. KURTZ, S. KÖSTLMEIER and M. RÜHLE, Phys. Rev. Lett. 86 (2001) 5066.

    Article  PubMed  Google Scholar 

  22. N. SHIBATA, F. OBA, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, Philos. Mag. Lett. 82 (2002) 393.

    Article  Google Scholar 

  23. Z. ZHANG, W. SIGLE and M. RÜHLE, Phys. Rev. B 66 (2002) 094108.

    Article  Google Scholar 

  24. H. NISHIMURA, K. MATSUNAGA, T. SAITO T, T. YAMAMOTO and Y. IKUHARA, J. Amer. Ceram. Soc. 86 (2003) 574.

    Google Scholar 

  25. N. SHIBATA, F. OBA, T. YAMAMOTO and Y. IKUHARA, Philos. Mag. 84 (2004) 2381.

    Article  Google Scholar 

  26. Y. SATO, F. OBA, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, J. Amer. Ceram. Soc. 85 (2002) 2142.

    Google Scholar 

  27. F. OBA, Y. SATO, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, ibid. 86 (2003) 1616.

    Google Scholar 

  28. Y. SATO, F. OBA, M. YODOGAWA, T. YAMAMOTO and Y. IKUHARA, J. Appl. Phys. 95 (2004) 1258.

    Google Scholar 

  29. K. L. MERKLE, G.-R. BAI, Z. LI, C.-Y. SONG and L. J. THOMPSON, Phys. Stat. Sol. (a) 166 73 (1998).

    Article  Google Scholar 

  30. V. POTIN, P. RUTERANA, G. NOUET, R. C. POND and H. MORKOÇ, Phys. Rev. B 61 (2000) 5587.

    Article  Google Scholar 

  31. F. OBA, H. OHTA, Y. SATO, H. HOSONO, T. YAMAMOTO and Y. IKUHARA, ibid. 70 (2004) 125415.

    Article  Google Scholar 

  32. D. R. CLARKE, J. Amer. Ceram. Soc. 82 (1999) 485.

    Google Scholar 

  33. M. MATSUOKA, Jpn. J. Appl. Phys. 10 (1971) 736.

    Google Scholar 

  34. K. MUKAE, K. TSUDA and I. NAGASAWA, ibid. 16 (1977) 1361.

    Google Scholar 

  35. G. E. PIKE and C. H. SEAGER, J. Appl. Phys. 50 (1979) 3414.

    Article  Google Scholar 

  36. D. G. BRANDON, B. RALPH, S. RANGANATHAN and M. S. WALD, Acta. Metall. 12 (1964) 813.

    Article  Google Scholar 

  37. J. D. GALE, J. Chem. Soc. Faraday Trans. 93 (1997) 629.

    Article  Google Scholar 

  38. G. V. LEWIS and C. R. A. CATLOW, J. Phys. C: Solid State Phys. 18 (1985) 1149.

    Article  Google Scholar 

  39. J. M. COWLEY and A. F. MOODIE, Acta Cryst. 10 (1957) 609.

    Article  Google Scholar 

  40. S. C. ABRAHAMS and J. L. BERNSTEIN, Acta. Crystallogr. Sect. B 25 (1969) 1233.

    Article  Google Scholar 

  41. J. ELSNER, R. JONES, P. K. SITCH, V. D. POREZAG, M. ELSTNER, TH. FRAUENHEIM, M. I. HEGGIE, S. ÖBERG and P. R. BRIDDON, Phys. Rev. Lett. 79 (1997) 3672.

    Article  Google Scholar 

  42. J. CHEN, P. RUTERANA and G. NOUET, Mater. Sci. Eng. B82 (2001) 117.

    Article  Google Scholar 

  43. A. BÉRÉ and A. SERRA, Phys. Rev. B 66 (2002) 085330.

    Article  Google Scholar 

  44. Idem, ibid. 65 (2002) 205323.

    Article  Google Scholar 

  45. J. CHEN, P. RUTERANA and G. NOUET, Phys. Rev. B 67 (2003) 205210.

    Article  Google Scholar 

  46. Y. XIN, S. J. PENNYCOOK, N. D. BROWNING, P. D. NELLIST, S. SIVANANTHAN, F. OMNÉS, B. BEAUMONT, J. P. FAURIE and P. GIBART, Appl. Phys. Lett. 72 (1998) 2680.

    Article  Google Scholar 

  47. W. BOLLMANN, “Crystal Defects and Crystalline Interfaces” (Springer-Verlag, Berlin, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Oba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oba, F., Sato, Y., Yamamoto, T. et al. Effect of boundary plane on the atomic structure of [0001] Σ 7 tilt grain boundaries in ZnO. J Mater Sci 40, 3067–3074 (2005). https://doi.org/10.1007/s10853-005-2666-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2666-4

Keywords

Navigation