Skip to main content
Log in

Using hybrid reinforcement methodology to enhance overall mechanical performance of pure magnesium

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, magnesium based composites containing galvanised iron wire mesh and carbon fibres as continuous reinforcement were fabricated using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterisation of the extruded composite samples showed minimal porosity and good interfacial integrity between iron wire mesh and the matrix. The penetration of magnesium in between carbon fibres remains limited. Mechanical characterization revealed that the addition of reinforcements lead to an increase in hardness, dynamic modulus and 0.2%YS, did not affect the UTS and reduced the ductility. The overall mechanical performance of the composite with hybrid reinforcement synthesized in this study remained superior when compared to conventional composite formulations with comparatively higher volume fraction of reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. DEGISCHER, M. DOKTOR and P. PRADER, in “Metal Matrix Composites and Metallic Foams”, edited by T. W. Clyne et al., “Euromat 99” (Wiley-VCH, Weinheim, 2000) Vol. 5, p. 113.

    Google Scholar 

  2. B. TERRY and G. JONES, in “Metal Matrix Composites: Current Developments and Future Trends in Industrial Research and Applications” (Elsevier Advanced Technology, Oxford, 1990) p. 41.

    Google Scholar 

  3. V. LAURENT, P. JARRY, G. REGAZZONI and D. APELIAN, J. Mater. Sci. 27 (1992) 4447.

    Article  CAS  ADS  Google Scholar 

  4. D. J. LLYOD, Int. Mater. Rev. 39 (1994) 1.

    Google Scholar 

  5. A. LUO, Metal. Mater. A 26 (1995) 2445.

    Article  Google Scholar 

  6. D. M. LEE, B. K. SUH, B. G. KIM, J. S. LEE and C. H. LEE, Mater. Sci. Technol. 13 (1997) 590.

    CAS  Google Scholar 

  7. T. EBERT, F. MOLL and K. U. KAINER, Powder Metal. 40 (1997) 126.

    CAS  Google Scholar 

  8. D. J. TOWLE and C. M. FRIEND, Mater. Sci. Eng. A 188 (1994) 153.

    Article  Google Scholar 

  9. R. UNVERRICHT, V. PEITZ, W. RIEHEMANN and H. FERKEL, in “Magnesium Alloys and their Applications” (Werkstoff-Informationsgesellschaft mbH, Germany, 1998) p. 327.

    Google Scholar 

  10. I. W. HALL, J. Mater. Sci. 26 (1991) 776.

    Article  CAS  ADS  Google Scholar 

  11. M. RUSSELL-STEVENS, D. C. PLANE, J. SUMMERSCALES, P. SCHULZ and M. PAPAKYRIACOU, Mater. Sci. Technol. 18 (2002) 501.

    Article  CAS  Google Scholar 

  12. V. V. GANESH and M. GUPTA, Mater. Res. Bull. 35 (2000) 2275.

    Article  CAS  Google Scholar 

  13. S. F. HASSAN and M. GUPTA, Mater. Res. Bull. 37 (2002) 337.

    Article  Google Scholar 

  14. S. F. HASSAN and M. GUPTA, J. Alloy Compd. 335 (2002) 10.

    Article  Google Scholar 

  15. S. F. HASSAN and M. GUPTA, J. Alloy Compd. 345 (2002) 246.

    Article  CAS  Google Scholar 

  16. R. CHEN and X. LI, Compos. Sci. Technol. 49 (1993) 357.

    Article  CAS  Google Scholar 

  17. R. WU, in “Composite Interfaces (ICCI-II)” (Elsevier Science Publishing, Cleveland, Ohio, 1988) p. 43.

    Google Scholar 

  18. S. P. RAWAL and M. S. MISRA, in “Composite Interfaces (ICCI-II)” (Elsevier Science Publishing, Cleveland, Ohio, 1988) p. 179.

    Google Scholar 

  19. P. SCHULZ, H. KAUFMANN and H. CAPEL, in “Metal Matrix Composites and Metallic Foams”, edited by T. W. Clyne et al., Euromat 99 (Wiley-VCH, Weinheim, 2000) Vol. 5 p. 128.

  20. M. OTTMULLER, C. KORNER and R. F. SINGER, in “Metal Matrix Composites and Metallic Foams”, edited by T. W. Clyne et al., Euromat 99 (Wiley-VCH, Weinheim, 2000) Vol. 5, p. 168.

  21. J. SCHRODER and K. U. KAINER, Mater. Sci. Eng. A 135 (1991) 33.

    Article  Google Scholar 

  22. F. WU, J. ZHU, Y. CHEN and G. ZHANG, Mater. Sci. Eng. A 277 (2000) 143.

    Article  Google Scholar 

  23. T. W. CHOU, in “Microstructural Design of Fiber Composites” (Cambridge University Press, Cambridge, New York, 1993) p. 231.

    Google Scholar 

  24. Hexcel Fibers website, IM7 HS-CP5000 Carbon Fiber Product Data, http://www.hexcelfibers.com/Tools/Downloads/default.htm (accessed Sept. 2004).

  25. M. GUPTA, M. O. LAI and C. Y. SOO, Mater. Res. Bull. 30 (1995) 1525.

    Article  Google Scholar 

  26. M. GUPTA, L. M. THAM and L. CHENG, Mater. Sci. Technol. 15 (1999) 1139.

    Google Scholar 

  27. M. GUPTA, M. O. LAI and D. SARAVANARANGANTHAN, J. Mater. Sci. 35 (2000) 2155.

    Article  CAS  Google Scholar 

  28. M. GUPTA, C. LANE and E. J. LAVERNIA, Scr. Metall. Mater. 26 (1992) 825.

    Article  CAS  Google Scholar 

  29. B. D. CULLITY, in “Elements of X-ray Diffraction”, 2nd edn (Addison-Wesley, Reading, MA, 1978) p. 414.

    Google Scholar 

  30. R. K. EVERETT and R. J. ARSENAULT, in “Metal Matrix Composites” (Academic Press Publishers, Boston, 1991) p. 64.

    Google Scholar 

  31. R. ASTHANA, J. Mater. Synth. Proces. 5 (1997) 251.

    CAS  Google Scholar 

  32. M. GUPTA, L. SU and T. S. SRIVATSAN, Revi. Proc. Chem. Engng. 1 (1998) 179.

    CAS  Google Scholar 

  33. M. GUPTA, M. O. LAI and M. S. BOON, Mater. Res. Bull. 33 (1998) 1387.

    Article  CAS  Google Scholar 

  34. B. L. MORDIKE and P. LUKAC, Surf Interf. Anal. 31 (2001) 682.

    Article  CAS  Google Scholar 

  35. S. P. RAWAL, Surf Interf. Anal. 31 (2001) 692.

    Article  CAS  Google Scholar 

  36. A. MORTENSEN, Mater. Sci. Eng. A 135 (1991) 1.

    Article  Google Scholar 

  37. J. JACKOWSKI, in “Metal Matrix Composites and Metallic Foams”, edited by T. W. Clyne et al., Euromat 99 (Wiley-VCH, Weinheim, 2000) Vol. 5, p. 133.

  38. V. V. GANESH, P. K. TAN and M. GUPTA, J. Alloy Compd. 315 (2001) 203.

    Article  CAS  Google Scholar 

  39. L. TAO and F. DELANNAY, Acta Mater. 46 (1998) 6497.

    Article  CAS  Google Scholar 

  40. M. R. KRISHNADEV, R. ANGERS, C. G. KRISHNADAS NAIR and G. J. HUARD, J. Mater. 45 (1993) 52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, W.L.E., Gupta, M. Using hybrid reinforcement methodology to enhance overall mechanical performance of pure magnesium. J Mater Sci 40, 2875–2882 (2005). https://doi.org/10.1007/s10853-005-2429-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2429-2

Keywords

Navigation