Skip to main content
Log in

Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular dynamics based heat-flux auto-correlation functions are combined with a Green-Kubo relation from the linear response theory to quantify the lattice contribution to thermal conductivity of single-walled carbon nanotubes with three different chiralities (screw symmetries). The interactions between carbon atoms within a nanotube are analyzed using the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. The results obtained show that, due to a long-term exponential-decay character of the heat-flux auto-correlation functions, converging values of the lattice thermal conductivities can be obtained using computational cells considerably smaller than the phonon mean free path. However, to obtain accurate values of the thermal conductivity, a spectral Green-Kubo relation and a phonon-based extrapolation function are found to be instrumental for quantifying the thermal conductivity contribution of the long-wavelength phonons not allowed in the computational cells of a finite size. The results further show that chirality of the carbon nanotubes can affect the lattice contribution to the thermal conductivity by as much as 20%. Also, the simulation results of the effect of temperature on the thermal conductivity clearly show a competition between an increase in the number of phonons and an increased probability for phonon scattering at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. STACHOWIAK, V. V. SUMAROKOV, J. MUCHA and A. JEZOWSKI, Phys. Rev. B 58 (1998) 2380.

    Google Scholar 

  2. J. CHE, T. CAGIN, W. DENG and W. A. GODDARD III, J. Chem. Phys. 113 (2000) 6888.

    Google Scholar 

  3. L. CHICO, V. H. CRESPI and L. X. BENEDICT, Phys. Rev. Lett. 76 (1996) 971.

    Google Scholar 

  4. L. LANGER, V. BAYOT and E. GRIVEI, ibid. 76 (1996) 479.

    Google Scholar 

  5. T. W. EBBESEN, H. J. LEZEC, H. HIURA, J. W. BENNETT, H. F. GHAEMI and T. THIO, Nature 382 (1996) 54.

    Google Scholar 

  6. T. PICHLER, M. KNUPFER and M. S. GOLDEN, Phys. Rev. Lett. 80 (1998) 4729.

    Google Scholar 

  7. D. J. EVANS, Phys. Lett. 91A (1982) 457.

    Google Scholar 

  8. D. MACGOWAN and D. J. EVANS, ibid. A 117 (1986) 414.

    Google Scholar 

  9. P. J. DAVIS and D. J. EVANS, J. Chem. Phys. 103 (1995) 4261.

    Google Scholar 

  10. S. WALKAUSKAS, D. BROIDO, K KEMPA and T. REINECKE, J. Appl. Phys. 85 (1999) 2579.

    Google Scholar 

  11. A. BALANDIN and K. WANG, Phys. Rev. B 58 (1998) 1544.

    Google Scholar 

  12. V. L. GUREVICH, “Transport in Phonon Systems” (North-Holland, Amsterdam, 1986).

    Google Scholar 

  13. M. J. GILLAN, Phys. Scr., T T39 (1991) 362.

    Google Scholar 

  14. M. GRUJICIC, G. CAO and B. GERSTEN, Mater. Sci. Engng. B107 (2004) 204.

    Google Scholar 

  15. G. D. MAHAN, “Many-Particle Physics” (Plenum, New York, 1993).

    Google Scholar 

  16. R. KUBO, M. TODA and N. HASHITSUME, “Statistical Physics” (Springer, Berlin, 1985) Vol. II.

    Google Scholar 

  17. G. D. MAHAN, “Many-Particle Physics” (Plenum, New York, 1993).

    Google Scholar 

  18. S. J. STUART, A. B. TUTEIN and J. A. HARRISON, J. Chem. Phys. 112 (2000) 6472.

    Google Scholar 

  19. D. W. BRENNER, S. B. SINNOTT and J. A. HARRISON (unpublished).

  20. H. J. C. BERENDSEN, J. P. M. POSTMA, W. F. VAN GUNSTEREN, A. DI NOLA and J. R. HAAK, J. Chem. Phys. 81 (1984) 3684.

    Google Scholar 

  21. W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY and W. P. VETTERLING, “Numerical Recipes: The Art of Scientific Computing” (Cambridge University Press, 1986).

  22. J. M. ZIMAN, “Principles of the Theory of Solids” (Cambridge University Press, Cambridge, 1972).

    Google Scholar 

  23. W. YI, L. LU, D.-L. ZHANG, Z. W. PAN and S. S. XIE, Phys. Rev. B 59 (1999) R9015.

    Google Scholar 

  24. J. TANG, L.-C. QIN, T. SASAKI, M. YUDASAKA, A. MATSUSHITA and S. IIJIMA, Phys. Rev. Lett. 85 (2000) 1887.

    Google Scholar 

  25. S. G. VOLZ and G. CHEN, Phys. Rev. B 61 (2000) 2651.

    Google Scholar 

  26. Idem., Physica B 263–264 (1999) 709.

    Google Scholar 

  27. J. HONE, M. WHITNEY, C. PISKOTI and A. ZETTL, Phys. Rev. B 59 (1999) R2541.

    Google Scholar 

  28. P. KIM, L. SHI, A. MAJUMDAR and P. L. McEUEN, Phys. Rev. Lett. 87 (2001) 215502.

    Google Scholar 

  29. S. BERBER, Y. K. KWON and D. TOMANEK, ibid. 84 (2000) 4613.

    Google Scholar 

  30. B. A. GLAVIN, ibid. 86 (2001) 4318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Cao, G. & Roy, W.N. Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. J Mater Sci 40, 1943–1952 (2005). https://doi.org/10.1007/s10853-005-1215-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1215-5

Keywords

Navigation