Skip to main content
Log in

Computer simulation of the solidification of cast titanium dental prostheses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Temperature distributions in titanium dental castings and molds are of great influence on the quality of titanium dental castings, and few efforts have been made in the numerical simulation of heat transfer in the process for casting titanium for dental applications. A finite difference scheme of the component-wise splitting method, which is unconditionally stable, was developed to solve the three-dimensional heat transfer problem for titanium dental casting during the investment cast and centrifugal cast process. 4 kinds of runner system were simulated and the computational efficiency were analyzed by the component-wise splitting method and the explicit finite difference method, the results shown that the techniques used in the current research can greatly improve the computational efficiency of the simulation system. The porosity predictions of 4 kinds of runner system were carried out with the simulation program. The predicted results were in good agreement with those of literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. ANDERSSON, B. BERGMAN and C. BESSING, Acta Odontol Scand 47 (1989) 278.

    Google Scholar 

  2. B. BERGMAN, C. BESSING and G. ERICSON, Acta Odontol Scand 48 (1990) 113.

    PubMed  Google Scholar 

  3. T. JEMT and B. LINDEN, Int. J. Periodontal Restor Dent 12 (1992) 176.

    Google Scholar 

  4. R. BLACKMAN, N. BARGHI and C. TRAN, J. Prosthet Dent 65 (1991) 309.

    PubMed  Google Scholar 

  5. E. P. LAUTENSCHLAGER and P. MONAGHAN, Int. Dent. J. 43 (1993) 245.

    PubMed  Google Scholar 

  6. L. PRÖBSTER, J. GEIS-GERSTORFER and A. SIMONIS, Dental Labor 39 (1991) 1073.

    PubMed  Google Scholar 

  7. E. BERG. J. Dent. 25 (1997) 113.

    Article  PubMed  Google Scholar 

  8. H. HERO, M. SYVERUD and M. WAARLI, J. Mater. Sci.: Mater. Med., 4 (1993) 296.

    Article  Google Scholar 

  9. H. HERO, M. SYVERUD and M. WAARLI, Dental materials 9 (1993) 15.

    Article  PubMed  Google Scholar 

  10. T. I. CHAI and R. S. STEIN, J. Prosth Den. 73 (1995) 534.

    Google Scholar 

  11. I. WATANABE, J. H. WATKINS and H. NAKAJIMA, J. Dent. Res. 769 (1997) 773.

    Google Scholar 

  12. F. SCHEPPE and P. R. SAHM, in “Modeling of Casting, Welding and Advanced Solidification Process IX,” 2000, 207.

  13. M. STEMMLER, G. LASCHET and L. HAAS, in “Modeling of Casting, Welding and Advanced Solidification Process IX,” 2000 222.

  14. W. D. GRIFFITHS, in “Modeling of Casting, Welding and Advanced Solidification Process IX,” 2000 143–150.

  15. G. WANG, L. YANG and T. Z. ZHOU, J. Beijing Univ. Aeron. Astron. 3 (2000) 249.

    Google Scholar 

  16. Z. J. LIANG, Q. Y. XU and J. T. LI, Rare Metal Mater. Engng. 3 (2003) 164.

    Google Scholar 

  17. M. WU, A. LUDWIG, P. R. SAHM and A. BUHRIG-POLACZEK, in “Modeling of Casting, Welding and Advanced Solidification Process IX,” 2003, 261.

  18. M. WU, J. SCHÁDLICH-STUBENRAUCH and M. AUGTHUN, Den. Mater. 14 (1998) 321.

    Article  Google Scholar 

  19. M. WU, J. TINSCHERT and M. AUGTHUN, Den. Mater. 17 (2001) 102.

    Article  Google Scholar 

  20. M. WU, M. AUGTHUN and I. WAGNER, J. Mater. Sci.: Mater. Med. 12 (2001) 519.

    Article  Google Scholar 

  21. M. WU, P. R. SANHM and M. AUGTHUN, J. Mater. Sci.: Mater. Med. 10 (1999) 519.

    Article  Google Scholar 

  22. B. C. LIU and T. JING, in “Analog Simulation and Quality Control for Casting Engineering “(China Machine-9-Press, Beijing, 2001). (in Chinese).

    Google Scholar 

  23. Y. S. TOULOUKIAN, R. W. POWELL, C. Y. HO and P. G. KLEMENS, in “Thermophysical Properties of Matter: Thermal Conductivity-Metallic Elements and Alloys,” The TPRC Data Series (4) 414.

  24. Y. S. TOULOUKIAN, R. W. POWELL, C. Y. HO and P. G. KLEMENS, in “Thermophysical Properties of Matter: Thermal Conductivity-Metallic Elements and Alloys,” The TPRC Data Series (4) 260.

  25. O'MAHONEY DENIS and J.B. DAVID, Experim. Therm. Fluid Sci. 22 (2000) 111.

    Article  Google Scholar 

  26. I. OHNAKA, A. SUGIYAMA and H. ONDA, in “Proceeding of Modeling of Casting and Solidification Processes VI,” 2004, Taiwan.

  27. J. R. SHENEFELT, R. LUCK, J. T. BERRYAND and R. P. TAYLOR, Amer. Soc. Mechan. Eng., Manufact. Engng. Div., MED 10 (1999) 507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XP., Chen, G., Xiong, SM. et al. Computer simulation of the solidification of cast titanium dental prostheses. J Mater Sci 40, 4911–4916 (2005). https://doi.org/10.1007/s10853-005-0418-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-0418-0

Keywords

Navigation