Skip to main content
Log in

On the probabilistic min spanning tree Problem

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

We study a probabilistic optimization model for min spanning tree, where any vertex v i of the input-graph G(V, E) has some presence probability p i in the final instance G′ ⊂ G that will effectively be optimized. Suppose that when this “real” instance G′ becomes known, a spanning tree T, called anticipatory or a priori spanning tree, has already been computed in G and one can run a quick algorithm (quicker than one that recomputes from scratch), called modification strategy, that modifies the anticipatory tree T in order to fit G′. The goal is to compute an anticipatory spanning tree of G such that, its modification for any \(G' \subseteq G\) is optimal for G′. This is what we call probabilistic min spanning tree problem. In this paper we study complexity and approximation of probabilistic min spanning tree in complete graphs under two distinct modification strategies leading to different complexity results for the problem. For the first of the strategies developed, we also study two natural subproblems of probabilistic min spanning tree, namely, the probabilistic metric min spanning tree and the probabilistic min spanning tree 1,2 that deal with metric complete graphs and complete graphs with edge-weights either 1, or 2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averbakh, I., Berman, O., Simchi-Levi, D.: Probabilistic a priori routing-location problems. Naval Res. Logistics 41, 973–989 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsimas, D.J.: Probabilistic Combinatorial Optimization Problems. Phd thesis, Operations Research Center, MIT, Cambridge Mass., USA (1988)

  3. Bertsimas, D.J.: On probabilistic traveling salesman facility location problems. Transp. Sci. 3, 184–191 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D.J.: The probabilistic minimum spanning tree problem. Networks 20, 245–275 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsimas, D.J., Jaillet, P., Odoni, A.: A priori optimization. Oper. Res. 38(6), 1019–1033 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchi, L., Knowles, J., Bowler, N.: Local search for the probabilistic traveling salesman problem: correlation to the 2-p-opt and 1-shift algorithms. Eur. J. Oper. Res. 161(1), 206–219 (2005)

    Article  MathSciNet  Google Scholar 

  7. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (1997)

    MATH  Google Scholar 

  8. Bourgeois, N., Della Croce, F., Escoffier, B., Murat, C., Paschos, V.Th.: Probabilistic coloring of bipartite and split graphs. J. Comb. Optim. 17(3), 274–311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Butelle, F.: Contribution à l’algorithmique distribuée de contrôle: arbres couvrants avec et sans contraintes. PhD thesis, Université Paris VIII (1994)

  10. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackerman type complexity. J. Assoc. Comput. Mach. 47(6), 1028–1047 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM J. Comput. 5, 724–742 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill (2001)

  13. Dantzig, G.W.: Linear programming under uncertainty. Manage. Sci. 1, 197–206 (1951)

    Article  MathSciNet  Google Scholar 

  14. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. 71B, 233–240 (1967)

    MathSciNet  Google Scholar 

  15. Georgiadis, L.: Arborescence optimization problems solvable by edmonds’ algorithm. Theor. Comput. Sci. 301, 427–437 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jaillet, P.: Probabilistic Traveling Salesman Problem. Technical Report 185, Operations Research Center, MIT, Cambridge Mass., USA (1985)

  17. Jaillet, P.: A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaillet, P.: Shortest path problems with node failures. Networks 22, 589–605 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaillet, P., Odoni, A.: The probabilistic vehicle routing problem. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. North Holland, Amsterdam (1988)

    Google Scholar 

  20. Korte, B.: Combinatorial Optimization: Theory and Algorithms, vol. 21 of Algorithms and Combinatorics, 3rd edn. Springer (2006)

  21. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, Boston (1997)

    MATH  Google Scholar 

  22. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murat, C., Paschos, V.Th.: The probabilistic longest path problem. Networks 33, 207–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murat, C., Paschos, V.Th.: A priori optimization for the probabilistic maximum independent set problem. Theor. Comput. Sci. 270, 561–590 (2002)

    Article  MATH  Google Scholar 

  25. Murat, C., Paschos, V.Th.: The probabilistic minimum vertex-covering problem. Int. Trans. Opl. Res. 9(1):19–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murat, C., Paschos, V.Th.: On the probabilistic minimum coloring and minimum k-coloring. Discrete Appl. Math. 154, 564–586 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paschos, V.Th., Telelis, O.A., Zissimopoulos, V.: Steiner forests on stochastic metric graphs. In: Dress, A., Xu, Y., Zhu, B. (eds.) Proc. Conference on Combinatorial Optimization and Applications, COCOA’07, vol. 4616 of Lecture Notes in Computer Science, pp. 112–123. Springer-Verlag (2007)

  28. Paschos, V.Th., Telelis, O.A., Zissimopoulos, V.: Probabilistic models for the steiner tree problem. Networks 56(1), 39–49 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Prekopa, A.: Stochastic Programming. Kluwer Academic Publishers, The Netherlands (1995)

    Google Scholar 

  30. Tarjan, R.E.: Efficience of a good but not linear set-union algorithm. J. Assoc. Comput. Mach. 22, 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao, A.: An O(|E| log log |V|) algorithm for finding minimum spanning trees. Inf. Process. Lett. 4, 21–23 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Murat.

Additional information

Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boria, N., Murat, C. & Paschos, V. On the probabilistic min spanning tree Problem. J Math Model Algor 11, 45–76 (2012). https://doi.org/10.1007/s10852-011-9165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-011-9165-1

Keywords

Navigation