Skip to main content
Log in

The linear ordering problem: Instances, search space analysis and algorithms

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

The linear ordering problem is an NP-hard problem that arises in a variety of applications. Due to its interest in practice, it has received considerable attention and a variety of algorithmic approaches to its solution have been proposed. In this paper we give a detailed search space analysis of available benchmark instance classes that have been used in various researches. The large fitness-distance correlations observed for many of these instances suggest that adaptive restart algorithms like iterated local search or memetic algorithms, which iteratively generate new starting solutions for a local search based on previous search experience, are promising candidates for obtaining high performing algorithms. We therefore experimentally compared two such algorithms and the final experimental results suggest that, in particular, the memetic algorithm is a new state-of-the-art approach to the linear ordering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Angel V. Zissimopoulos (1998) ArticleTitleAutocorrelation coefficient for the graph bipartitioning problem Theoret. Comput. Sci. 191 IssueID(1-2) 229–243

    Google Scholar 

  2. E. Angel V. Zissimopoulos (2000) ArticleTitleOn the classification of NP-complete problems in terms of their correlation coefficient Discrete Appl. Math. 99 IssueID(1-3) 261–277

    Google Scholar 

  3. Becker, O.: Das Helmstädtersche Reihenfolgeproblem - die Effizienz verschiedener Näherungsverfahren, in Computer Uses in the Social Science, Wien, January 1967.

  4. M. Birattari T. Stützle L. Paquete K. Varrentrapp (2002) A racing algorithm for configuring metaheuristics W. B. Langdon (Eds) et al. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) Morgan Kaufmann Publishers San Francisco, CA 11–18

    Google Scholar 

  5. K. D. Boese (1996) Models for iterative global optimization University of California, Computer Science Department Los Angeles, CA

    Google Scholar 

  6. V. Campos F. Glover M. Laguna R. Martí (2001) ArticleTitleAn experimental evaluation of a scatter search for the linear ordering problem J. Global Optim. 21 IssueID(4) 397–414

    Google Scholar 

  7. V. Campos M. Laguna R. Martí (1999) Scatter search for the linear ordering problem D. Corne M. Dorigo F. Glover (Eds) New Ideas in Optimization McGraw-Hill London, UK 331–339

    Google Scholar 

  8. S. Chanas P. Kobylanski (1996) ArticleTitleA new heuristic algorithm solving the linear ordering problem Comput. Optim. Appl. 6 191–205

    Google Scholar 

  9. R. K. Congram (2000) Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation University of Southampton, Faculty of Mathematical Studies UK

    Google Scholar 

  10. M. Grötschel M. Jünger G. Reinelt (1984) ArticleTitleA cutting plane algorithm for the linear ordering problem Oper. Res. 32 IssueID(6) 1195–1220

    Google Scholar 

  11. M. Grötschel M. Jünger G. Reinelt (1984) ArticleTitleOptimal triangulation of large real world input-output matrices Statistische Hefte 25 261–295

    Google Scholar 

  12. H. H. Hoos T. Stützle (1998) Evaluating Las Vegas algorithms — pitfalls and remedies G. F. Cooper S. Moral (Eds) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence Morgan Kaufmann Publishers San Francisco, CA 238–245

    Google Scholar 

  13. G. Huang A. Lim (2003) Designing a hybrid genetic algorithm for the linear ordering problem E. Cantú-Paz (Eds) et al. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003) Springer-Verlag Berlin 1053–1064

    Google Scholar 

  14. T. Jones S. Forrest (1995) Fitness distance correlation as a measure of problem difficulty for genetic algorithms L. J. Eshelman (Eds) Proceedings of the Sixth International Conference on Genetic Algorithms Morgan Kaufmann Publishers San Mateo, CA 184–192

    Google Scholar 

  15. R. Kaas (1981) ArticleTitleA branch and bound algorithm for the acyclic subgraph problem European J. Oper. Res. 8 355–362

    Google Scholar 

  16. S. Kirkpatrick C. D. Gelatt SuffixJr. M. P. Vecchi (1983) ArticleTitleOptimization by simulated annealing Science 220 671–680 Occurrence Handle85f:90091

    MathSciNet  Google Scholar 

  17. D. E. Knuth (1993) The Stanford GraphBase: A Platform for Combinatorial Computing Addison-Wesley New York

    Google Scholar 

  18. M. Laguna R. Martí V. Campos (1999) ArticleTitleIntensification and diversification with elite tabu search solutions for the linear ordering problem Comput. Oper. Res. 26 IssueID(12) 1217–1230

    Google Scholar 

  19. H. R. Lourenço O. Martin T. Stützle (2002) Iterated local search F. Glover G. Kochenberger (Eds) Handbook of Metaheuristics SeriesTitleInternational Series in Operations Research & Management Science NumberInSeries57 Kluwer Academic Publishers Norwell, MA 321–353

    Google Scholar 

  20. P. Merz (2000) Memetic algorithms for combinatorial optimization problems: Fitness landscapes and effective search strategies Department of Electrical Engineering and Computer Science, University of Siegen Germany

    Google Scholar 

  21. P. Merz B. Freisleben (1999) Fitness landscapes and memetic algorithm design D. Corne M. Dorigo F. Glover (Eds) New Ideas in Optimization McGraw-Hill London, UK 245–260

    Google Scholar 

  22. P. Merz B. Freisleben (2000) ArticleTitleFitness landscape analysis and memetic algorithms for the quadratic assignment problem IEEE Trans. Evolut. Comput. 4 IssueID(4) 337–352

    Google Scholar 

  23. J. E. Mitchell B. Borchers (2000) Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm H. L. Frenk K. Roos T. Terlaky S. Zhang (Eds) High Performance Optimization Kluwer Academic Publishers Dordrecht, The Netherlands 349–366

    Google Scholar 

  24. P. Moscato C. Cotta (2002) A gentle introduction to memetic algorithms F. Glover G. Kochenberger (Eds) Handbook of Metaheuristics SeriesTitleInternational Series in Operations Research & Management Science NumberInSeries57 Kluwer Academic Publishers Norwell, MA 105–144

    Google Scholar 

  25. T. Schiavinotto T. Stützle (2003) Search space analysis of the linear ordering problem G. R. Raidl (Eds) et al. Applications of Evolutionary Computing SeriesTitleLecture Notes in Comput. Sci. NumberInSeries2611 Springer-Verlag Berlin 322–333

    Google Scholar 

  26. P. F. Stadler (1995) Towards a theory of landscapes R. Lopéz-Peña R. Capovilla R. García-Pelayo H. Waelbroeck F. Zertuche (Eds) Complex Systems and Binary Networks SeriesTitleLecture Notes in Phys. NumberInSeries461 Springer-Verlag Berlin 77–163

    Google Scholar 

  27. P. F. Stadler (1996) ArticleTitleLandscapes and their correlation functions J. Math. Chemistry 20 IssueID(1) 1–45

    Google Scholar 

  28. P. F. Stadler W. Schnabl (1992) ArticleTitleThe landscape of the travelling salesman problem Phys. Lett. A 161 337–344

    Google Scholar 

  29. Standard Performance Evaluation Corporation: SPEC CPU95 and CPU2000 Benchmarks, http://www.spec.org/, November 2002.

  30. T. Stützle H. H. Hoos (2000) ArticleTitle MAX-MIN ant system Future Generation Computer Systems 16 IssueID(8) 889–914

    Google Scholar 

  31. T. Stützle H. H. Hoos (2001) Analysing the run-time behaviour of iterated local search for the travelling salesman problem P. Hansen C. C. Ribeiro (Eds) Essays and Surveys on Metaheuristics Kluwer Academic Publishers Boston, MA 589–611

    Google Scholar 

  32. G. Syswerda (1990) Schedule optimization using genetic algorithms L. Davis (Eds) Handbook of Genetic Algorithms Van Nostrand Reinhold New York

    Google Scholar 

  33. E. D. Weinberger (1990) ArticleTitleCorrelated and uncorrelated fitness landscapes and how to tell the difference Biological Cybernetics 63 IssueID(5) 325–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiavinotto, T., Stützle, T. The linear ordering problem: Instances, search space analysis and algorithms. J Math Model Algor 3, 367–402 (2005). https://doi.org/10.1007/s10852-005-2583-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-005-2583-1

Key words

Mathematics Subject Classifications (2000)

Navigation