Skip to main content
Log in

Some Theoretical Links Between Shortest Path Filters and Minimum Spanning Tree Filters

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Edge-aware filtering is an important pre-processing step in many computer vision applications. In the literature, there exist several versions of collaborative edge-aware filters based on spanning trees and shortest path heuristics which work well in practice. For instance, tree filter (TF) which is recently proposed based on a minimum spanning tree (MST) heuristic yields promising results in many filtering applications. However, links between the tree-based filters and shortest path-based filters are faintly explored. In this article, we introduce an edge-aware generalization of the TF termed as UMST filter based on a subgraph generated by edges of all MSTs. The major contribution of this paper is establishing theoretical links between filters based on MSTs and filters based on geodesics via power watershed framework. More precisely, we show that union of minimum spanning trees (UMSTs) filter can be obtained as the limit of shortest path filters (SPFs). Intuitively, TF can be viewed as an approximate limit of the SPFs. We propose and provide a detailed analysis of two different implementations of the UMST filter based on shortest paths. Further, we establish empirically with the help of denoising experiments that TF is an approximate limit by showing that TF and one of our approximations yield similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alvino, C., Unal, G., Slabaugh, G., Peny, B., Fang, T.: Efficient segmentation based on eikonal and diffusion equations. Int. J. Comput. Math. 84(9), 1309–1324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 426–437. Springer, Berlin, Heidelberg (2010)

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  4. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)

  5. Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G.: Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree. IEEE TIP 23(2), 555–569 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 1, pp. 105–112. IEEE (2001)

  7. Braides, A.: Gamma-Convergence for Beginners, vol. 22. Clarendon Press, New York (2002)

    Book  MATH  Google Scholar 

  8. Brunet, D., Vrscay, E.R., Wang, Z.: On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 21(4), 1488–1499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Challa, A., Danda, S., Daya Sagar, B.S., Najman, L.: An Introduction to gamma-convergence for spectral clustering. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) Discrete Geometry for Computer Imagery, Lecture Note In Computer Sciences, vol. 10502, pp. 185–196. Springer, Vienna (2017)

    Chapter  Google Scholar 

  10. Chang, J.H.R., Wang, Y.C.F.: Propagated image filtering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10–18. IEEE (2015)

  11. Ciesielski, K.C., Falcão, A.X., Miranda, P.A.V.: Path-value functions for which dijkstra’s algorithm returns optimal mapping. J. Math. Imaging Vis. (2018). https://doi.org/10.1007/s10851-018-0793-1

  12. Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.: Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. J. Math. Imaging Vis. 44(3), 375–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: a unifying graph-based optimization framework. IEEE PAMI 33(7), 1384–1399 (2011)

    Article  Google Scholar 

  14. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE PAMI 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  15. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: thinnings, shortest path forests, and topological watersheds. IEEE PAMI 32(5), 925–939 (2010)

    Article  Google Scholar 

  16. Criminisi, A., Sharp, T., Blake, A.: Geos: geodesic image segmentation. Comput. Vis. ECCV 2008, 99–112 (2008)

    Google Scholar 

  17. Danda, S., Challa, A., Sagar, B.D., Najman, L.: Power tree filter: a theoretical framework linking shortest path filters and minimum spanning tree filters. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 199–210. Springer (2017)

  18. Falcão, A.X., da Fontoura Costa, L., Da Cunha, B.: Multiscale skeletons by image foresting transform and its application to neuromorphometry. Pattern Recognit. 35(7), 1571–1582 (2002)

    Article  MATH  Google Scholar 

  19. Falcao, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE PAMI 26(1), 19 (2004)

    Article  Google Scholar 

  20. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM Transactions on Graphics (TOG), vol. 27, p. 67. ACM (2008)

  21. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  22. Grady, L.: Random walks for image segmentation. IEEE PAMI 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  23. Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighbourhoods. Pattern Recognit. 42(10), 2306–2316 (2009)

    Article  MATH  Google Scholar 

  24. He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on Computer Vision 2010, pp. 1–14. Springer (2010)

  25. Lerallut, R., Decencière, É., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)

    Article  Google Scholar 

  26. Lotufo, R.d.A., Falcão, A.A., Zampirolli, F.A.: Fast Euclidean distance transform using a graph-search algorithm. In: Proceedings XIII Brazilian Symposium on Computer Graphics and Image Processing, 2000, pp. 269–275. IEEE (2000)

  27. Najman, L.: Extending the PowerWatershed framework thanks to \(\Gamma \)-convergence. SIAM J. Imaging Sci. 10(4), 2275–2292 (2017). https://doi.org/10.1137/17M1118580

    Article  MathSciNet  MATH  Google Scholar 

  28. Najman, L., Pesquet, J.C., Talbot, H.: When convex analysis meets mathematical morphology on graphs. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 473–484. Springer (2015)

  29. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Underst. 82(1), 42–56 (2001)

    Article  MATH  Google Scholar 

  30. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)

  31. Stawiaski, J., Meyer, F.: Minimum spanning tree adaptive image filtering. In: 2009 16th IEEE ICIP, pp. 2245–2248. IEEE (2009)

  32. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  33. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 1998. ICCV 1998, pp. 839–846. IEEE (1998)

  34. Van Vliet, L.J.: Robust local max-min filters by normalized power-weighted filtering. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 1, pp. 696–699. IEEE (2004)

  35. Vineet, V., Harish, P., Patidar, S., Narayanan, P.: Fast minimum spanning tree for large graphs on the GPU. In: Proceedings of the Conference on High Performance Graphics 2009, pp. 167–171. ACM (2009)

  36. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  37. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \({L}_0\) gradient minimization. ACM Trans. Graph. (TOG) 30(6), 174 (2011)

    Google Scholar 

  38. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)

    Google Scholar 

  39. Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2016)

    Article  Google Scholar 

  40. Yang, Q.: Stereo matching using tree filtering. IEEE PAMI 37(4), 834–846 (2015)

    Article  Google Scholar 

  41. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 100(1), 68–86 (1971)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

SD and AC would like to thank Indian Statistical Institute for providing fellowship to pursue the research. BSDS would like to acknowledge the funding received from EMR/2015/000853 SERB and ISRO/SSPO/Ch-1/2016-17 ISRO research grants. LN would like acknowledge the funding received from Programme d’Investis sements d’Avenir (LabEx BEZOUT ANR-10-LABX-58), ANR-15-CE40-0006 CoMeDiC and ANR-14-CE27-0001 GRAPHSIP research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sravan Danda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version is published as ‘Power tree filter: A theoretical framework linking shortest path filters and minimum spanning tree filters’ in International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, Springer, 2017, pp 199–210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danda, S., Challa, A., Sagar, B.S.D. et al. Some Theoretical Links Between Shortest Path Filters and Minimum Spanning Tree Filters. J Math Imaging Vis 61, 745–762 (2019). https://doi.org/10.1007/s10851-018-0866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0866-1

Keywords

Navigation