Skip to main content
Log in

Acyclic Partial Matchings for Multidimensional Persistence: Algorithm and Combinatorial Interpretation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Given a simplicial complex and a vector-valued function on its vertices, we present an algorithmic construction of an acyclic partial matching on the cells of the complex compatible with the given function. This implies the construction can be used to build a reduced filtered complex with the same multidimensional persistent homology as of the original one filtered by the sublevel sets of the function. The correctness of the algorithm is proved, and its complexity is analyzed. A combinatorial interpretation of our algorithm based on the concept of a multidimensional discrete Morse function is introduced for the first time in this paper. Numerical experiments show a substantial rate of reduction in the number of cells achieved by the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allili, M., Kaczynski, T., Landi, C.: Reducing complexes in multidimensional persistent homology theory. J. Symb. Comput. 78, 61–75 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allili, M., Kaczynski, T., Landi, C., Masoni, F.: Algorithmic construction of acyclic partial matchings for multidimensional persistence. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) Discrete Geometry for Computer Imagery. Proceedings of the 20th IAPR International Conference, DGCI2017, pp. 375–387. Springer (2017)

  3. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)

    Article  MathSciNet  Google Scholar 

  4. Biasotti, S., Cerri, A., Giorgi, D., Spagnuolo, M.: Phog: photometric and geometric functions for textured shape retrieval. Comput. Graphics Forum 32(5), 13–22 (2013)

    Article  Google Scholar 

  5. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. In: Proceedings of the 23rd annual Symposium on Computational Geometry, SCG ’07, pp. 184–193. ACM, New York, NY, USA (2007).https://doi.org/10.1145/1247069.1247105

  7. Cavazza, N., Ethier, M., Frosini, P., Kaczynski, T., Landi, C.: Comparison of persistent homologies for vector functions: from continuous to discrete and back. Comput. Math. Appl. 66, 560–573 (2013). https://doi.org/10.1016/j.camwa.2013.06.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerri, A., Frosini, P., Krospatch, W.G., Landi, C.: A global method for reducing multidimensional size graphs-graph-based representations in pattern recognition. Lect. Notes Comput. Sci. 6658, 1–11 (2011)

    Article  Google Scholar 

  9. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Foundations of Computational Mathematics: FoCM’02, Minneapolis 2002, pp. 37–57. Cambridge University Press, Cambridge (2004)

  10. Edelsbrunner, H., Harer, J.: Persistent homology: a survey. In: Surveys on Discrete and Computational Geometry. Contemporary Mathematics, vol. 453, pp. 257–282. American Mathematical Society, Providence, RI (2008)

  11. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escolar, E.G., Hiraoka, Y.: Persistence modules on commutative ladders of finite type. In: Mathematical Software ICMS 2014, pp. 144–151. Lecture Notes in Computer Science 8592 (2014)

  13. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frosini, P.: Measuring shapes by size functions. In: Proceedings of the of SPIE, Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 122–133. SPIE, Boston, MA, USA (1991)

  15. Gäfvert, O.: Algorithms for multidimensional persistence. Master’s thesis, KTH, Stockholm, Sweden (2016)

  16. Iuricich, F., Scaramuccia, S., Landi, C., De Floriani, L.: A discrete morse-based approach to multivariate data analysis. In: SIGGRAPH ASIA 2016 Symposium on Visualization, SA ’16, pp. 5:1–5:8. ACM, New York, NY, USA (2016). https://doi.org/10.1145/3002151.3002166

  17. Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of chain complexes. Comput. Math. Appl. 35(4), 59–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. King, H., Knudson, K., Mramor, N.: Algebraic Topology. Colloquium Publications, vol. 27. American Mathematical Society, Providence (1942)

    Google Scholar 

  20. Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 50(2), 330–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mrozek, M., Batko, B.: Coreduction homology algorithm. Discrete Comput. Geom. 41, 96–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Patel, A.: Reeb spaces and the robustness of preimages. Ph.D. thesis, Duke University (2010)

  23. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  24. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley, Boston (2011)

    Google Scholar 

  25. Smale, S.: Global analysis and economics. I. Pareto optimum and a generalization of Morse theory. In: Dynamical systems. Proceedings of a Symposium Held at the University of Bahia, Salvador, 1971, pp. 531–544. Academic Press, New York (1973)

  26. The GTS Library (2000). http://gts.sourceforge.net/samples.html. Accessed 26 July 2018

  27. Turner, K., Murkherjee, A., Boyer, D.M.: Persistent homology transform for modeling shapes and surfaces. Inf. Inference 3(4), 310–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xia, K., Wei, G.W.: Multidimensional persistence in biomolecular data. J. Comput. Chem. 36(20), 1502 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Allili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tomasz Kaczynski was partially supported by NSERC Canada Discovery Grant. Claudia Landi was supported by INdAM-GNSAGA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allili, M., Kaczynski, T., Landi, C. et al. Acyclic Partial Matchings for Multidimensional Persistence: Algorithm and Combinatorial Interpretation. J Math Imaging Vis 61, 174–192 (2019). https://doi.org/10.1007/s10851-018-0843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0843-8

Keywords

Navigation