Skip to main content
Log in

Two-Dimensional Compact Variational Mode Decomposition

Spatially Compact and Spectrally Sparse Image Decomposition and Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Decomposing multidimensional signals, such as images, into spatially compact, potentially overlapping modes of essentially wavelike nature makes these components accessible for further downstream analysis. This decomposition enables space–frequency analysis, demodulation, estimation of local orientation, edge and corner detection, texture analysis, denoising, inpainting, or curvature estimation. Our model decomposes the input signal into modes with narrow Fourier bandwidth; to cope with sharp region boundaries, incompatible with narrow bandwidth, we introduce binary support functions that act as masks on the narrow-band mode for image recomposition. \(L^1\) and TV terms promote sparsity and spatial compactness. Constraining the support functions to partitions of the signal domain, we effectively get an image segmentation model based on spectral homogeneity. By coupling several submodes together with a single support function, we are able to decompose an image into several crystal grains. Our efficient algorithm is based on variable splitting and alternate direction optimization; we employ Merriman–Bence–Osher-like threshold dynamics to handle efficiently the motion by mean curvature of the support function boundaries under the sparsity promoting terms. The versatility and effectiveness of our proposed model is demonstrated on a broad variety of example images from different modalities. These demonstrations include the decomposition of images into overlapping modes with smooth or sharp boundaries, segmentation of images of crystal grains, and inpainting of damaged image regions through artifact detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Throughout this paper, we will be using notation pertaining to images defined over continuous domains, albeit it is implicitly understood that numerical implementations will always make use of appropriate commonplace discretization and quantization.

  2. Similarly, in higher dimensions, a half-space of the frequency domain needs to be suppressed.

  3. To be more precise, the objective is convex in \({\mathbf {\upomega }}_k\) if we consider the analytic signal construction for \(u_{AS,k}\) fixed while optimizing for \({\mathbf {\upomega }}_k\).

  4. Note that the spectrum of \(u_k\) is complex-valued, so the process of “taking the first variation” is not self-evident. However, the functional is analytic in \({\hat{u}}_k\) and complex-valued equivalents to the standard derivatives do indeed apply.

  5. Again we omit iteration superscripts for \(A_i\), but it is understood that we always use the most recent estimate of a variable, \(A_i^{t+1}\) for \(i<k\) and \(A_i^t\) for \(i>k\).

  6. Here, t is understood as an artificial time introduced for the sole purpose of differential equation notation, but quantized into the discrete iterates of the scheme.

  7. Of course, the simpler 2D-VMD model only uses a subset of these parameters, for the support functions are fixed at \(A_k=1\) uniformly.

  8. MATLAB code available at http://bigwww.epfl.ch/demo/steerable-wavelets/.

  9. Obfuscated MATLAB p-code available at http://perso.ens-lyon.fr/nelly.pustelnik/Software/Toolbox_PHT_2D_v1.0.zip.

  10. Lower artifact threshold \(\delta \) and higher TV weight \({\gamma }_k\) might increase the mode cleanliness even further.

  11. Image used with permission, courtesy by Richard Wheeler, Sir William Dunn School of Pathology, University of Oxford, UK.

  12. Ibid.

References

  1. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow. Int. J. Comput. Vis. 97(3), 322–338 (2011). doi:10.1007/s11263-011-0490-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D.P.: Multiplier methods: a survey. Automatica 12(2), 133–145 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnell, D.A., Basov, D.N., Bode, M., Diebold, U., Kalinin, S.V., Madhavan, V., Novotny, L., Salmeron, M., Schwarz, U.D., Weiss, P.S.: Imaging physical phenomena with local probes: from electrons to photons. Rev. Mod. Phys. 84(3), 1343–1381 (2012). doi:10.1103/RevModPhys.84.1343

    Article  Google Scholar 

  4. Bülow, T., Sommer, G.: A novel approach to the 2D analytic signal. In: Computer Analysis of Images and Patterns, pp. 25–32 (1999)

  5. Candes, E.J., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive representation for objects with edges. In: Curve and Surface Fitting, pp. 105–120 (1999)

  6. Carson, J.: Notes on the theory of modulation. Proc. IRE 10(1), 57–64 (1922). doi:10.1109/JRPROC.1922.219793

    Article  Google Scholar 

  7. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  8. Claridge, S.A., Schwartz, J.J., Weiss, P.S.: Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano 5(2), 693–729 (2011). doi:10.1021/nn103298x

    Article  Google Scholar 

  9. Clausel, M., Oberlin, T., Perrier, V.: The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM-FM images (2012). arxiv:1211.5082

  10. Claridge, S.A., Thomas, J.C., Silverman, M.A., Schwartz, J.J., Yang, Y., Wang, C., Weiss, P.S.: Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy. J. Am. Chem. Soc. 135(49), 18528–18535 (2013). doi:10.1021/ja408550a

    Article  Google Scholar 

  11. Cohen, L.D.: Auxiliary variables and two-step iterative algorithms in computer vision problems. J. Math. Imaging Vis. 6(1), 59–83 (1996). doi:10.1007/BF00127375

    Article  MathSciNet  Google Scholar 

  12. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, vol. 49, pp. 185–212. Springer, New York, NY (2011). doi:10.1007/978-1-4419-9569-8

    Google Scholar 

  13. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988). doi:10.1002/cpa.3160410705

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmonic Anal. 30(2), 243–261 (2011). doi:10.1016/j.acha.2010.08.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Do, M., Vetterli, M.: Pyramidal directional filter banks and curvelets. In: Proceedings 2001 International Conference on Image Processing, vol. 2, pp. 158–161. IEEE (2001). doi:10.1109/ICIP.2001.958075

  16. Dong, W., Li, X., Lin, X., Li, Z.: A bidimensional empirical mode decomposition method for fusion of multispectral and panchromatic remote sensing images. Remote Sens. 6(9), 8446–8467 (2014). doi:10.3390/rs6098446

    Article  Google Scholar 

  17. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014). doi:10.1109/TSP.2013.2288675

    Article  MathSciNet  Google Scholar 

  18. Dragomiretskiy, K., Zosso, D.: Two-dimensional variational mode decomposition. In: Tai, X.C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. Lecture Notes in Computer Science, vol. 8932, pp. 197–208. Springer, Berlin (2015). doi:10.1007/978-3-319-14612-6_15

    Google Scholar 

  19. Elsey, M., Wirth, B.: Fast automated detection of crystal distortion and crystal defects in polycrystal images. Multiscale Model. Simul. 12(1), 1–24. doi:10.1137/130916515

  20. Esedoglu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2015). doi:10.1002/cpa.21527

    Article  MathSciNet  MATH  Google Scholar 

  21. Esedoglu, S., Tsai, Y.H.R.: Threshold dynamics for the piecewise constant Mumford–Shah functional. J. Comput. Phys. 211, 367–384 (2006). doi:10.1016/j.jcp.2005.05.027

    Article  MathSciNet  MATH  Google Scholar 

  22. Estellers, V., Zosso, D., Bresson, X., Thiran, J.P.: Harmonic active contours. IEEE Trans. Image Process. 23(1), 69–82 (2014). doi:10.1109/TIP.2013.2286326

    Article  MathSciNet  Google Scholar 

  23. Fauchereau, N., Pegram, G.G.S., Sinclair, S.: Empirical mode decomposition on the sphere: application to the spatial scales of surface temperature variations. Hydrol. Earth Syst. Sci. 12(3), 933–941 (2008). doi:10.5194/hess-12-933-2008

    Article  Google Scholar 

  24. Flandrin, P., Gonçalvès, P., Rilling, G.: EMD equivalent filter banks, from interpretation to applications. In: Hilbert–Huang Transform and Its Applications, pp. 57–74 (2005)

  25. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–457 (1946)

    Google Scholar 

  26. Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., Flenner, A., Percus, A.G.: Multiclass data segmentation using diffuse interface methods on graphs. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1600–1613 (2014). doi:10.1109/TPAMI.2014.2300478

    Article  MATH  Google Scholar 

  27. Georgoulas, G., Loutas, T., Stylios, C.D., Kostopoulos, V.: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition. Mech. Syst. Signal Process. 41(1–2), 510–525 (2013). doi:10.1016/j.ymssp.2013.02.020

    Article  Google Scholar 

  28. Gilles, J.: Multiscale texture separation. Multiscale Model. Simul. 10(4), 1409–1427 (2012). doi:10.1137/120881579

    Article  MathSciNet  MATH  Google Scholar 

  29. Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013). doi:10.1109/TSP.2013.2265222

    Article  MathSciNet  Google Scholar 

  30. Gilles, J., Tran, G., Osher, S.: 2D empirical transforms. Wavelets, ridgelets, and curvelets revisited. SIAM J. Imaging Sci. 7(1), 157–186 (2014). doi:10.1137/130923774

    Article  MathSciNet  MATH  Google Scholar 

  31. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)

    Book  MATH  Google Scholar 

  32. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009). doi:10.1137/080725891

    Article  MathSciNet  MATH  Google Scholar 

  33. Grafakos, L.: Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249. Springer, New York, NY (2009). doi:10.1007/978-0-387-09432-8

  34. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007). doi:10.1137/060649781

    Article  MathSciNet  MATH  Google Scholar 

  35. Han, J., van der Baan, M.: Empirical mode decomposition for seismic time-frequency analysis. Geophysics 78(2), O9–O19 (2013). doi:10.1190/geo2012-0199.1

    Article  Google Scholar 

  36. Han, P., Kurland, A.R., Giordano, A.N., Nanayakkara, S.U., Blake, M.M., Pochas, C.M., Weiss, P.S.: Heads and tails: simultaneous exposed and buried interface imaging of monolayers. ACS Nano 3(10), 3115–3121 (2009). doi:10.1021/nn901030x

    Article  Google Scholar 

  37. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hou, T.Y., Shi, Z.: Adaptive data analysis via sparse time-frequency representation. Adv. Adapt. Data Anal. 03(1 & 2), 1–28 (2011). doi:10.1142/S1793536911000647

    Article  MathSciNet  MATH  Google Scholar 

  39. Hou, T.Y., Shi, Z.: Data-driven time frequency analysis. Appl. Comput. Harmonic Anal. 35(2), 284–308 (2013). doi:10.1016/j.acha.2012.10.001

    Article  MathSciNet  MATH  Google Scholar 

  40. Hou, T.Y., Shi, Z.: Sparse time-frequency decomposition for multiple signals with same frequencies (2015). arXiv:1507.02037

  41. Hu, M., Liang, H.: Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis. Cogn. Neurodyn. 5(3), 277–284 (2011). doi:10.1007/s11571-011-9159-8

    Article  Google Scholar 

  42. Hu, H., Sunu, J., Bertozzi, A.L.: Multi-class graph Mumford–Shah model for plume detection using the MBO scheme. In: Tai, X.C., Bae, E., Chan, T.F., Lysaker, M. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, vol. 8932, pp. 209–222. Springer, Berlin (2015). doi:10.1007/978-3-319-14612-6_16

  43. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998). doi:10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  44. Labate, D., Lim, W.Q., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: Papadakis, M., Laine, A.F., Unser, M.A. (eds.) Optics and Photonics 2005, pp. 1–9. International Society for Optics and Photonics, Bellingham (2005). doi:10.1117/12.613494

    Google Scholar 

  45. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996). doi:10.1109/34.541406

  46. Leo, M., Piccolo, R., Distante, C., Memmolo, P., Paturzo, M., Ferraro, P.: Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography. Opt. Eng. 53(11), 112,314 (2014). doi:10.1117/1.OE.53.11.112314

    Article  Google Scholar 

  47. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). doi:10.1109/34.192463

    Article  MATH  Google Scholar 

  48. Meignen, S., Perrier, V.: A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 14(12), 932–935 (2007). doi:10.1109/LSP.2007.904706

    Article  Google Scholar 

  49. Merkurjev, E., Garcia-Cardona, C., Bertozzi, A.L., Flenner, A., Percus, A.G.: Diffuse interface methods for multiclass segmentation of high-dimensional data. Appl. Math. Lett. 33, 29–34 (2014). doi:10.1016/j.aml.2014.02.008

    Article  MathSciNet  MATH  Google Scholar 

  50. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994). doi:10.1006/jcph.1994.1105

    Article  MathSciNet  MATH  Google Scholar 

  51. Moore, A.M., Yeganeh, S., Yao, Y., Claridge, S.A., Tour, J.M., Ratner, M.A., Weiss, P.S.: Polarizabilities of adsorbed and assembled molecules: measuring the conductance through buried contacts. ACS Nano 4(12), 7630–7636 (2010). doi:10.1021/nn102371z

    Article  Google Scholar 

  52. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  53. Nunes, J., Bouaoune, Y., Delechelle, E., Niang, O., Bunel, P.: Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 21(12), 1019–1026 (2003). doi:10.1016/S0262-8856(03)00094-5

    Article  MATH  Google Scholar 

  54. Rilling, G., Flandrin, P.: One or two frequencies? The empirical mode decomposition answers. IEEE Trans. Signal Process. 56(1), 85–95 (2008). doi:10.1109/TSP.2007.906771

    Article  MathSciNet  Google Scholar 

  55. Rilling, G., Flandrin, P.: Sampling effects on the empirical mode decomposition. Adv. Adapt. Data Anal. 01(01), 43–59 (2009). doi:10.1142/S1793536909000023

    Article  MathSciNet  Google Scholar 

  56. Rilling, G., Flandrin, P., Gonçalvès, P.: On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (2003)

  57. Rockafellar, R.T.: A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Program. 5(1), 354–373 (1973). doi:10.1007/BF01580138

    Article  MathSciNet  MATH  Google Scholar 

  58. Ruuth, S.: Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 625, 603–625 (1998). doi:10.1006/jcph.1998.6025

    Article  MathSciNet  MATH  Google Scholar 

  59. Schmitt, J., Pustelnik, N., Borgnat, P., Flandrin, P., Condat, L.: 2-D Prony-Huang Transform: A New Tool for 2-D Spectral Analysis, p. 24 (2014). arxiv:1404.7680

  60. Schmitt, J., Pustelnik, N., Borgnat, P., Flandrin, P., Condat, L.: 2D Prony–Huang transform: a new tool for 2D spectral analysis. IEEE Trans. Image Process. 23(12), 5233–5248 (2014). doi:10.1109/TIP.2014.2363000

    Article  MathSciNet  Google Scholar 

  61. Sharpley, R.C., Vatchev, V.: Analysis of the intrinsic mode functions. Constr. Approx. 24(1), 17–47 (2005). doi:10.1007/s00365-005-0603-z

    Article  MathSciNet  MATH  Google Scholar 

  62. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  63. Sykes, E.C.H., Mantooth, B.A., Han, P., Donhauser, Z.J., Weiss, P.S.: Substrate-mediated intermolecular interactions: a quantitative single molecule analysis. J. Am. Chem. Soc. 127(19), 7255–7260 (2005). doi:10.1021/ja0472331

    Article  Google Scholar 

  64. Szuts, Z.B., Blundell, J.R., Chidichimo, M.P., Marotzke, J.: A vertical-mode decomposition to investigate low-frequency internal motion across the Atlantic at \(26^{\circ }\) N. Ocean Sci. 8(3), 345–367 (2012). doi:10.5194/os-8-345-2012

    Article  Google Scholar 

  65. Tang, J., Zhao, L., Yue, H., Yu, W., Chai, T.: Vibration analysis based on empirical mode decomposition and partial least square. Proc. Eng. 16, 646–652 (2011). doi:10.1016/j.proeng.2011.08.1136

    Article  Google Scholar 

  66. Tavallali, P., Hou, T.Y., Shi, Z.: Extraction of intrawave signals using the sparse time-frequency representation method. Multiscale Model. Simul. 12(4), 1458–1493 (2014). doi:10.1137/140957767

    Article  MathSciNet  MATH  Google Scholar 

  67. Thomas, J.C., Schwartz, J.J., Hohman, J.N., Claridge, S.A., Auluck, H.S., Serino, A.C., Spokoyny, A.M., Tran, G., Kelly, K.F., Mirkin, C.A., Gilles, J., Osher, S.J., Weiss, P.S.: Defect-tolerant aligned dipoles within two-dimensional plastic lattices. ACS Nano 9(5), 4734–4742 (2015). doi:10.1021/acsnano.5b01329

    Article  Google Scholar 

  68. Thomas, J.C., Goronzy, D.P., Dragomiretskiy, K., Zosso, D., Gilles, J., Osher, S.J., Bertozzi, A.L., Weiss, P.S.: Mapping buried hydrogen-bonding networks. ACS Nano 10(5), 5446–5451 (2016). doi:10.1021/acsnano.6b01717

    Article  Google Scholar 

  69. Unser, M., Sage, D., Van De Ville, D.: Multiresolution monogenic signal analysis using the Riesz–Laplace wavelet transform. IEEE Trans. Image Process. 18(11), 2402–2418 (2009). doi:10.1109/TIP.2009.2027628

    Article  MathSciNet  Google Scholar 

  70. Unser, M., Chenouard, N., Van De Ville, D.: Steerable pyramids and tight wavelet frames in \(L_{2}(\mathbb{R}^d)\). IEEE Trans. Image Process. 20(10), 2705–2721 (2011). doi:10.1109/TIP.2011.2138147

    Article  MathSciNet  Google Scholar 

  71. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01(01), 1–41 (2009). doi:10.1142/S1793536909000047

    Article  Google Scholar 

  72. Wu, H.T., Flandrin, P., Daubechies, I.: One or two frequencies? The synchrosqueezing answers. Adv. Adapt. Data Anal. 03(01n02), 29–39 (2011). doi:10.1142/S179353691100074X

    Article  MathSciNet  MATH  Google Scholar 

  73. Yan, M.: Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013). doi:10.1137/12087178X

    Article  MathSciNet  MATH  Google Scholar 

  74. Yang, H., Ying, L.: Synchrosqueezed wave packet transform for 2D mode decomposition. SIAM J. Imaging Sci. 6(4), 1979–2009 (2013). doi:10.1137/120891113

    Article  MathSciNet  MATH  Google Scholar 

  75. Yang, H., Lu, J., Ying, L.: Crystal image analysis using 2D synchrosqueezed transforms, p. 27 (2014). arxiv:1402.1262

  76. Yugay, D., Goronzy, D.P., Kawakami, L.M., Claridge, S.A., Song, T.B., Yan, Z., Xie, Y.H., Gilles, J., Yang, Y., Weiss, P.S.: Copper ion binding site in \(\beta \)-amyloid peptide. Nano Lett. 16(10), 6282–6289 (2016). doi:10.1021/acs.nanolett.6b02590

    Article  Google Scholar 

  77. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47(3), 377–400 (2010). doi:10.1007/s10589-008-9225-2

    Article  MathSciNet  MATH  Google Scholar 

  78. Zosso, D., An, J., Stevick, J., Takaki, N., Weiss, M., Slaughter, L.S., Cao, H.H., Weiss, P.S., Bertozzi, A.L.: Image segmentation with dynamic artifacts detection and bias correction. AIMS Journal of Inverse Problems Imaging, p. 24 (2017) (accepted)

Download references

Acknowledgements

The authors are grateful to Jérôme Gilles for providing the synthetic texture image for Fig. 1; to Diana Yugay for providing peptide \(\beta \)-sheet images used in Figs. 6 and 7; and to Richard Wheeler for permitting the use of the colloidal crystal image of Fig. 12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Zosso.

Additional information

This work was supported by the Swiss National Science Foundation (SNF) under Grants PBELP2-137727 and P300P2-147778, the UC Lab Fees Research Grant 12-LR-236660, and the W. M. Keck Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zosso, D., Dragomiretskiy, K., Bertozzi, A.L. et al. Two-Dimensional Compact Variational Mode Decomposition. J Math Imaging Vis 58, 294–320 (2017). https://doi.org/10.1007/s10851-017-0710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0710-z

Keywords

Mathematics Subject Classification

Navigation