Skip to main content
Log in

Mumford–Shah and Potts Regularization for Manifold-Valued Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Mumford–Shah and Potts functionals are powerful variational models for regularization which are widely used in signal and image processing; typical applications are edge-preserving denoising and segmentation. Being both non-smooth and non-convex, they are computationally challenging even for scalar data. For manifold-valued data, the problem becomes even more involved since typical features of vector spaces are not available. In this paper, we propose algorithms for Mumford–Shah and for Potts regularization of manifold-valued signals and images. For the univariate problems, we derive solvers based on dynamic programming combined with (convex) optimization techniques for manifold-valued data. For the class of Cartan–Hadamard manifolds (which includes the data space in diffusion tensor imaging (DTI)), we show that our algorithms compute global minimizers for any starting point. For the multivariate Mumford–Shah and Potts problems (for image regularization), we propose a splitting into suitable subproblems which we can solve exactly using the techniques developed for the corresponding univariate problems. Our method does not require any priori restrictions on the edge set and we do not have to discretize the data space. We apply our method to DTI as well as Q-ball imaging. Using the DTI model, we obtain a segmentation of the corpus callosum on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. 51(3), 2230–2260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexander, D., Barker, G., Arridge, S.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)

    Article  Google Scholar 

  3. Alexander, A., Lee, J., Lazar, M., Boudos, R., DuBray, M., Oakes, T., Miller, J., Lu, J., Jeong, E.K., McMahon, W., et al.: Diffusion tensor imaging of the corpus callosum in autism. Neuroimage 34(1), 61–73 (2007)

    Article  Google Scholar 

  4. Alexeev, B., Ward, R.: On the complexity of Mumford–Shah-type regularization, viewed as a relaxed sparsity constraint. IEEE Trans. Image Process. 19(10), 2787–2789 (2010)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via \({\varGamma }\)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center. Comput. Geom. 46(1), 93–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the log-Euclidean framework. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2005, pp. 115–122. Springer, Berlin (2005)

  8. Assaf, Y., Pasternak, O.: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008)

    Article  Google Scholar 

  9. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24, 1542–1566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  11. Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  12. Basu, S., Fletcher, T., Whitaker, R.: Rician noise removal in diffusion tensor MRI. In: Medical Image Computing and Computer-Assisted Intervention 2006, pp. 117–125. Springer, Berlin (2006)

  13. Behrens, T., Johansen-Berg, H., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  14. Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of cyclic data and applications in variational denoising. SIAM J. Imaging Sci. 7(4), 2916–2953 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bertsekas, D.: Multiplier methods: a survey. Automatica 12(2), 133–145 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds II. Ann. Stat. 1225–1259 (2005)

  17. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds I. Ann. Stat. 1–29 (2003)

  18. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  19. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  20. Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O.: Consistencies and rates of convergence of jump-penalized least squares estimators. Ann. Stat. 37(1), 157–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chambolle, A.: Finite-differences discretizations of the Mumford–Shah functional. ESAIM Math. Modell. Numer. Anal. 33(02), 261–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chan, T., Kang, S., Shen, J.: Total variation denoising and enhancement of color images based on the CB and HSV color models. J. Vis. Commun. Image Represent. 12, 422–435 (2001)

    Article  Google Scholar 

  24. Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20(1–2), 147–162 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheng, G., Salehian, H., Vemuri, B.: Efficient recursive algorithms for computing the mean diffusion tensor and applications to DTI segmentation. In: Computer Vision-ECCV 2012, pp. 390–401. Springer, Berlin (2012)

  26. Chen, B., Hsu, E.: Noise removal in magnetic resonance diffusion tensor imaging. Magn. Reson. Med. 54, 393–401 (2005)

    Article  Google Scholar 

  27. Cook, P., Bai, Y., Nedjati-Gilani, S., Seunarine, K., Hall, M., Parker, G., Alexander, D.: Camino: Open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p. 2759 (2006)

  28. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  29. do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  30. Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp. 65–72 (2003)

  31. Ferreira, R., Xavier, J., Costeira, J., Barroso, V.: Newton algorithms for Riemannian distance related problems on connected locally symmetric manifolds. IEEE J. Sel. Top. Signal Process. 7, 634–645 (2013)

    Article  Google Scholar 

  32. Fillard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans. Med. Imaging 26(11), 1472–1482 (2007)

    Article  Google Scholar 

  33. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23, 995–1005 (2004)

    Article  Google Scholar 

  34. Fletcher, P.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105, 171–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  36. Foong, J., Maier, M., Clark, C., Barker, G., Miller, D., Ron, M.: Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatry 68(2), 242–244 (2000)

    Article  Google Scholar 

  37. Fornasier, M., March, R., Solombrino, F.: Existence of minimizers of the Mumford–Shah functional with singular operators and unbounded data. Ann. Mat. Pura Appl. 192(3), 361–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fornasier, M., Ward, R.: Iterative thresholding meets free-discontinuity problems. Found. Comput. Math. 10(5), 527–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Frank, L.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)

    Article  Google Scholar 

  40. Friedrich, F., Kempe, A., Liebscher, V., Winkler, G.: Complexity penalized M-estimation. J. Comput. Graph. Stat. 17(1), 201–224 (2008)

    Article  MathSciNet  Google Scholar 

  41. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  42. Goh, A., Lenglet, C., Thompson, P., Vidal, R.: A nonparametric Riemannian framework for processing high angular resolution diffusion images (HARDI). In: IEEE Conference on Computer Vision and Pattern Recognition., pp. 2496–2503 (2009)

  43. Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. 15, 1357–1411 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmonic Anal. 27, 325–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hess, C., Mukherjee, P., Han, E., Xu, D., Vigneron, D.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56(1), 104–117 (2006)

    Article  Google Scholar 

  46. Hohm, K., Storath, M., Weinmann, A.: An algorithmic framework for Mumford-Shah regularization of inverse problems in imaging. Inverse Probl. 31(11), 115011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jiang, M., Maass, P., Page, T.: Regularizing properties of the Mumford-Shah functional for imaging applications. Inverse Probl. 30(3), 035,007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Johansen-Berg, H., Behrens, T.: Diffusion MRI: From Quantitative Measurement to In-Vivo Neuroanatomy. Academic Press, London (2009)

    Google Scholar 

  49. Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., Thiran, J.P.: White matter fiber tract segmentation in DT-MRI using geometric flows. Med. Image Anal. 9(3), 223–236 (2005)

    Article  Google Scholar 

  50. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kendall, W.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 3, 371–406 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. Killick, R., Fearnhead, P., Eckley, I.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kimmel, R., Sochen, N.: Orientation diffusion or how to comb a porcupine. J. Vis. Commun. Image Represent. 13, 238–248 (2002)

    Article  Google Scholar 

  54. Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Am. Math. Soc. 121(1), 113–123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kubicki, M., McCarley, R., Westin, C.F., Park, H.J., Maier, S., Kikinis, R., Jolesz, F., Shenton, M.: A review of diffusion tensor imaging studies in schizophrenia. J. Psychiatr. Res. 41(1), 15–30 (2007)

    Article  Google Scholar 

  56. Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. 58(2), 431–449 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001)

    Article  Google Scholar 

  58. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2944–2951 (2013)

  59. Massonnet, D., Feigl, K.: Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 36, 441–500 (1998)

    Article  Google Scholar 

  60. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. IEEE Conf. Comput. Vis. Pattern Recogn. 17, 137–154 (1985)

    Google Scholar 

  61. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Oller, J., Corcuera, J.: Intrinsic analysis of statistical estimation. Ann. Stat. 1562–1581 (1995)

  63. Özarslan, E., Mareci, T.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Article  Google Scholar 

  64. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  65. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1133–1140 (2009)

  67. Potts, R.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48(01), 106–109 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  68. Rahman, I.U., Drori, I., Stodden, V.C., Donoho, D.L., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201–1232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Rao, C.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37(3), 81–91 (1945)

    MathSciNet  MATH  Google Scholar 

  70. Rosas, H., Lee, S., Bender, A., Zaleta, A., Vangel, M., Yu, P., Fischl, B., Pappu, V., Onorato, C., Cha, J.H., et al.: Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage 49(4), 2995–3004 (2010)

    Article  Google Scholar 

  71. Rosman, G., Bronstein, M., Bronstein, A., Wolf, A., Kimmel, R.: Group-valued regularization framework for motion segmentation of dynamic non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 725–736. Springer, Berlin (2012)

  72. Storath, M., Weinmann, A., Unser, M.: Exact algorithms for \(L^1\)-TV regularization of real-valued or circle-valued signals. SIAM J. Sci. Comput. (to appear). arXiv:1504.00499

  73. Storath, M., Weinmann, A., Demaret, L.: Jump-sparse and sparse recovery using Potts functionals. IEEE Trans. Signal Process. 62(14), 3654–3666 (2014)

    Article  MathSciNet  Google Scholar 

  74. Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the Potts model. Inverse Probl. 31(2), 025,003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  75. Storath, M., Weinmann, A.: Fast partitioning of vector-valued images. SIAM J. Imaging Sci. 7(3), 1826–1852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sturm, K.T.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Contemporary Mathematics, vol. 338, pp. 357–390. American Mathematical Society, Providence (2003)

  77. Tsai, A., Yezzi Jr, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  78. Tschumperlé, D., Deriche, R.: Diffusion tensor regularization with constraints preservation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. I948–I953 (2001)

  79. Tuch, D., Reese, T., Wiegell, M., Makris, N., Belliveau, J., Wedeen, V.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)

    Article  Google Scholar 

  80. Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  81. Veksler, O.: Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University (1999)

  82. Vese, L., Osher, S.: Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40, 2085–2104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wallner, J., Dyn, N.: Convergence and \(C^1\) analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22, 593–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wang, Z., Vemuri, B.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition., pp. I228–I233 (2004)

  85. Wang, Z., Vemuri, B.: DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Trans. Med. Imaging 24(10), 1267–1277 (2005)

    Article  Google Scholar 

  86. Weinmann, A.: Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal. 44, 162–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  88. Weinmann, A., Storath, M., Demaret, L.: The \({L}^1\)-Potts functional for robust jump-sparse reconstruction. SIAM J. Numer. Anal. 53(1), 644–673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  89. Wiegell, M., Tuch, D., Larsson, H., Wedeen, V.: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage 19(2), 391–401 (2003)

    Article  Google Scholar 

  90. Winkler, G., Liebscher, V.: Smoothers for discontinuous signals. J. Nonparametric Stat. 14(1–2), 203–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  91. Wittich, O., Kempe, A., Winkler, G., Liebscher, V.: Complexity penalized least squares estimators: analytical results. Math. Nachr. 281(4), 582–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zhukov, L., Whitaker, R., Museth, K., Breen, D., Barr, A.H.: Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data. J. Electron. Imaging 12(1), 125–133 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry for Education and Research under SysTec Grant 0315508. The first author acknowledges support by the Helmholtz Association within the young investigator group VH-NG-526. The third author was supported by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 267439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weinmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinmann, A., Demaret, L. & Storath, M. Mumford–Shah and Potts Regularization for Manifold-Valued Data. J Math Imaging Vis 55, 428–445 (2016). https://doi.org/10.1007/s10851-015-0628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0628-2

Keywords

Navigation