Skip to main content
Log in

Analysis of Amoeba Active Contours

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Subject of this paper is the theoretical analysis of structure-adaptive median filter algorithms that approximate curvature-based PDEs for image filtering and segmentation. These so-called morphological amoeba filters are based on a concept introduced by Lerallut et al. They achieve similar results as the well-known geodesic active contour and self-snakes PDEs. In the present work, the PDE approximated by amoeba active contours is derived for a general geometric situation and general amoeba metric. This PDE is structurally similar but not identical to the geodesic active contour equation. It reproduces the previous PDE approximation results for amoeba median filters as special cases. Furthermore, modifications of the basic amoeba active contour algorithm are analysed that are related to the morphological force terms frequently used with geodesic active contours. Experiments demonstrate the basic behaviour of amoeba active contours and its similarity to geodesic active contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34, 344–371 (1986)

    Article  Google Scholar 

  3. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of the Fifth International Conference on Computer Vision, IEEE, pp. 694–699. Computer Society Press, Cambridge, MA (1995)

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chao, S.M., Tsai, D.M.: An anisotropic diffusion-based defect detection for low-contrast glass substrates. Image Vis. Comput. 26(2), 187–200 (2008)

    Article  Google Scholar 

  7. Cohen, L.D.: On active contours and balloons. Comput. Vis. Graph. Image Process. Image Underst. 53(2), 211–218 (1991)

    MATH  Google Scholar 

  8. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical report, University of Manchester (2001)

  9. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis, no. 63 in IMA Conference Series (New Series), pp. 525–562. Clarendon Press, Oxford (1997)

  10. Holtzman-Gazit, M., Kimmel, R., Peled, N., Goldsher, D.: Segmentation of thin structures in volumetric medical images. IEEE Trans. Image Process. 15(2), 354–363 (2006)

    Article  Google Scholar 

  11. Ikonen, L., Toivanen, P.: Shortest routes on varying height surfaces using gray-level distance transforms. Image Vis. Comput. 23(2), 133–141 (2005)

    Article  Google Scholar 

  12. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proceedings of the Fifth International Conference on Computer Vision, pp. 810–815. IEEE Computer Society Press, Cambridge, MA (1995)

  13. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134, 275–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kimmel, R.: Fast edge integration. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision and Graphics, pp. 59–77. Springer, New York (2003)

    Chapter  Google Scholar 

  15. Lerallut, R., Decencière, E., Meyer, F.: Image processing using morphological amoebas. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, Computational Imaging and Vision, vol. 30. Springer, Dordrecht (2005)

    Google Scholar 

  16. Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)

    Article  Google Scholar 

  17. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proceedings of the 2000 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 316–323. Hilton Head Island, CA (2000)

  18. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)

    Article  Google Scholar 

  19. Maragos, P.: Overview of adaptive morphology: trends and perspectives. In: Proceedings of the 2009 IEEE International Conference on Image Processing, pp. 2241–2244. Cairo, Egypt (2009)

  20. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

  22. Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proceedings of the 1996 IEEE International Conference on Image Processing, vol. 1, pp. 817–820. IEEE, Lausanne (1996)

  23. Spira, A., Kimmel, R., Sochen, N.: A short-time Beltrami kernel for smoothing images and manifolds. IEEE Trans. Image Process. 16(6), 1628–1636 (2007)

    Article  MathSciNet  Google Scholar 

  24. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Menlo Park (1971)

    Google Scholar 

  25. Welk, M.: Amoeba active contours. In: Bruckstein, A.M., ter Haar Romeny, B., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, vol. 6667, pp. 374–385. Springer, Berlin (2012)

  26. Welk, M.: Relations between amoeba median algorithms and curvature-based PDEs. In: Kuijper, A., Pock, T., Bredies, K., Bischof, H. (eds.) Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, vol. 7893, pp. 392–403. Springer, Berlin (2013)

  27. Welk, M., Breuß, M., Vogel, O.: Morphological amoebas are self-snakes. J. Math. Imag. Vis. 39, 87–99 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk.

Appendix: Details of Proofs

Appendix: Details of Proofs

1.1 Proof of Corollary 2

For the \(L^1\) amoeba norm, one has \(\nu (s)=1+|s|\), thus \(\nu '(s)=\mathrm {sgn}\,s\). Inserting these into (5) yields

$$\begin{aligned} J_1(s,\alpha )&= \int \limits _{\alpha -\pi /2}^{\alpha +\pi /2}\!\! \frac{\sin ^2\vartheta \,\,\mathrm {sgn}\,\!\cos \vartheta }{(1+s\,|\cos \vartheta |)^4}~\mathrm {d}\vartheta \nonumber \\&=\int \limits _{\alpha -\pi /2}^{\pi /2}\!\! \frac{\sin ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta -\!\!\!\!\int \limits _{\pi /2}^{\alpha +\pi /2}\!\! \frac{\sin ^2\vartheta }{(1-s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&=\int \limits _{\alpha -\pi /2}^{\pi /2}\!\! \frac{\sin ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta -\!\!\!\!\int \limits _{\pi /2-\alpha }^{\pi /2}\!\! \frac{\sin ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&=\int \limits _{-\pi /2+\alpha }^{\pi /2-\alpha }\!\! \frac{\sin ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \end{aligned}$$
(64)

where we have assumed without loss of generality \(\alpha \in [0,\pi ]\). Evaluating the indefinite integrals

$$\begin{aligned}&\int \frac{\sin ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&\quad = \left\{ \begin{array}{ll} \frac{1}{2\,(s^2-1)^{5/2}} \ln \frac{\sqrt{s+1}+\sqrt{s-1}\tan \frac{\vartheta }{2}}{\sqrt{s+1}-\sqrt{s-1}\tan \frac{\vartheta }{2}}\;, &{} s>1\;,\\ \frac{1}{(1-s^2)^{5/2}} \arctan \left( \sqrt{\frac{1-s}{1+s}}\,\tan \frac{\vartheta }{2}\right) \;, &{} s<1 \end{array}\right. \nonumber \\&\qquad -\frac{\left\{ \begin{array}{@{}r@{}} \sin \vartheta \bigl ((2\,s^3+s)\cos ^2\vartheta +3(s^2+1)\cos \vartheta \\ -2\,s^3+5\,s\bigr ) \end{array}\right. }{6(s^2-1)^2(1+s\cos \vartheta )^2} \end{aligned}$$
(65)

and

$$\begin{aligned}&\int \frac{\sin ^2\vartheta }{(1+\cos \vartheta )^4}~\mathrm {d}\vartheta =\frac{\sin ^3\vartheta \,(4+\cos \vartheta )}{15\,(1+\cos \vartheta )^4} \end{aligned}$$
(66)

at the integration boundaries \(\pm (\pi /2-\alpha )\) and inserting \(\tan \left( \frac{\pi }{4}-\frac{\alpha }{2}\right) =\frac{\cos \alpha }{1+\sin \alpha }\) yields (27), (29) and (31). The proof for \(\alpha \in [-\pi ,0]\) is analogous but the integral is split for the \(\mathrm {sgn}\,\cos \vartheta \) factor at \(-\pi /2\), finally leading to integration boundaries \(\pm (\pi /2+\alpha )\). As a consequence, all instances of \(\sin \alpha \) are replaced with \(-\sin \alpha \), which is subsumed by the use of \(|\sin \alpha |\) in (27), (29) and (31). Analogously, one has for \(\alpha \in [0,\pi ]\)

$$\begin{aligned} J_3(s,\alpha )&= \int \limits _{\alpha -\pi /2}^{\alpha +\pi /2} \frac{\cos ^2\vartheta \,\mathrm {sgn}\,\cos \vartheta }{(1+s\,|\cos \vartheta |)^4}~\mathrm {d}\vartheta \nonumber \\&=\int \limits _{-\pi /2+\alpha }^{\pi /2-\alpha } \frac{\cos ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \end{aligned}$$
(67)

which is evaluated via the indefinite integrals

$$\begin{aligned}&\int \frac{\cos ^2\vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&\quad = \left\{ \begin{array}{ll} \frac{-4\,s^2-1}{2\,(s^2-1)^{7/2}} \ln \frac{\sqrt{s+1}+\sqrt{s-1}\tan \frac{\vartheta }{2}}{\sqrt{s+1}-\sqrt{s-1}\tan \frac{\vartheta }{2}}\;, &{} s>1\;,\\ \frac{4\,s^2+1}{(1-s^2)^{7/2}} \arctan \left( \sqrt{\frac{1-s}{1+s}}\,\tan \frac{\vartheta }{2}\right) \;, &{} s<1 \end{array}\right. \nonumber \\&\qquad +\frac{\left\{ \begin{array}{@{}r@{}} \sin \vartheta \bigl ((6\,s^5+10\,s^3-s)\cos ^2\vartheta \\ +3(2\,s^4+9\,s^2-1)\cos \vartheta \\ +(2\,s^3+13\,s)\bigr ) \end{array}\right. }{6(s^2-1)^2(1+s\cos \vartheta )^2}\;, \end{aligned}$$
(68)
$$\begin{aligned}&\int \frac{\cos ^2\vartheta }{(1+\cos \vartheta )^4}~\mathrm {d}\vartheta =\nonumber \\&\quad \frac{2\,\sin \vartheta \,(13\cos ^3\vartheta +52\cos ^2\vartheta +32\cos \vartheta +8)}{105\,(1+\cos \vartheta )^4} \end{aligned}$$
(69)

to obtain (28), (30) and (32). As before, the inclusion of the case \(\alpha \in [-\pi ,0]\) implies the use of \(|\sin \alpha |\) in all three equations. Finally, one has for \(J_2\) and \(\alpha \in [0,\pi ]\)

$$\begin{aligned} J_2(s,\alpha )&= \int \limits _{\alpha -\pi /2}^{\alpha +\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta \,\,\mathrm {sgn}\,\!\cos \vartheta }{(1+s\,|\cos \vartheta |)^4}~\mathrm {d}\vartheta \nonumber \\&=\int \limits _{\alpha -\pi /2}^{\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta -\!\!\int \limits _{\pi /2}^{\alpha +\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1-s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&=\int \limits _{\alpha -\pi /2}^{\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta -\!\!\int \limits _{-\pi /2}^{\alpha -\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&=\underbrace{\int \limits _{-\pi /2}^{\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta }_{{}=0} -~2\!\!\!\!\int \limits _{-\pi /2}^{\alpha -\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \nonumber \\&=~2\!\!\!\!\int \limits _{\pi /2-\alpha }^{\pi /2}\!\! \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta \end{aligned}$$
(70)

and the indefinite integral

$$\begin{aligned}&\int \frac{\sin \vartheta \,\cos \vartheta }{(1+s\cos \vartheta )^4}~\mathrm {d}\vartheta =\frac{3\,s\cos \vartheta +1}{6\,s^2\,(1+s\,\cos \vartheta )^3} \end{aligned}$$
(71)

from which (26) is obtained in a straightforward way. As before, the case \(\alpha \in [-\pi ,0]\) is subsumed by inserting modulus bars around \(\sin \alpha \).

1.2 Relation between \(\tilde{J}_1\) and \(\tilde{J}_3\)

To complete the proof of Corollary 3, we show that \(h(s)=s\,g'(s)\). We notice first that

$$\begin{aligned}&\frac{~\mathrm {d}}{~\mathrm {d}\vartheta }\left( \frac{\sin \vartheta }{\nu (\beta \,s\cos \vartheta )^3}\right) \nonumber \\&\quad = \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3} +3\,\beta \,s\,\frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4}\sin ^2\vartheta \end{aligned}$$
(72)

where the last summand is essentially the integrand of \(\tilde{J}_1(\beta \,s)\). By integration it follows that

$$\begin{aligned} 3\,\beta \,s\,\tilde{J}_1(\beta \,s)&= \underbrace{\left[ \frac{\sin \vartheta }{\nu (\beta \,s\cos \vartheta )^3}\right] ^{\vartheta =+\pi /2}_{\vartheta =-\pi /2}}_{{}=2}\nonumber \\ {}&\quad \!\!-\!\! \int \limits _{-\pi /2}^{+\pi /2}\!\! \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}~\mathrm {d}\vartheta \;. \end{aligned}$$
(73)

Substituting this into (34) yields

$$\begin{aligned} g(s)&=\frac{1}{2}\int \limits _{-\pi /2}^{+\pi /2} \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}~\mathrm {d}\vartheta \end{aligned}$$
(74)

from which one easily calculates

$$\begin{aligned} s\,g'(s)&= \frac{s}{2}\,\int \limits _{-\pi /2}^{+\pi /2} \frac{-3\,\beta \,\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^4} \nu '(\beta \,s\cos \vartheta )\cos \vartheta ~\mathrm {d}\vartheta \nonumber \\&=-\frac{3}{2}\,\beta \,s\,\tilde{J}_3(\beta \,s) = h(s)\;. \end{aligned}$$
(75)

1.3 Equivalence of Corollary 3 to the Result from [27]

In [27] it was shown that iterated amoeba median filtering approximates the PDE (4) as in Corollary 3 with the edge-stopping function \(g\) given by

$$\begin{aligned} g(s)&= \frac{3\,I_1(\beta \,s)}{\beta ^2\,s^2\,\psi \left( \frac{1}{\beta \,s} \right) ^3}\;, \end{aligned}$$
(76)
$$\begin{aligned} I_1(\beta \,s)&= \int \limits _0^1\xi ^2\,\sqrt{ \left( \psi ^{-1}\left( \frac{1}{\xi }\psi \left( \frac{1}{\beta \,s}\right) \right) \right) ^2-\frac{1}{\beta ^2\,s^2}\,}~\mathrm {d}\xi \;, \end{aligned}$$
(77)

where the function \(\psi \) is related to \(\nu \) via

$$\begin{aligned} \psi (q) =q\,\nu \left( \frac{1}{q}\right) \;, \end{aligned}$$
(78)

and \(\psi ^{-1}\) denotes the inverse function of \(\psi \). Substituting

$$\begin{aligned} \xi&= \frac{\psi \left( \frac{1}{\beta \,s}\right) }{\psi \left( \frac{1}{\beta \,s\cos \vartheta }\right) }\;, \end{aligned}$$
(79)
$$\begin{aligned} ~\mathrm {d}\xi&= -\frac{\psi \left( \frac{1}{\beta \,s}\right) }{\beta \,s}\, \frac{\psi '\left( \frac{1}{\beta \,s\cos \vartheta }\right) }{\psi \left( \frac{1}{\beta \,s\cos \vartheta }\right) ^2}\, \frac{\sin \vartheta }{\cos ^2\vartheta }~\mathrm {d}\vartheta \end{aligned}$$
(80)

into \(I_1\) yields

$$\begin{aligned}&I_1(\beta \,s)= -\int \limits _{\pi /2}^0 \frac{\psi \left( \frac{1}{\beta \,s}\right) ^2}{\psi \left( \frac{1}{\beta \,s\cos \vartheta }\right) ^2} {}\times \nonumber \\&\qquad \times \sqrt{\left( \psi ^{-1}\left( \frac{\psi \left( \frac{1}{\beta \,s\cos \vartheta }\right) }{\psi \left( \frac{1}{\beta \,s}\right) }\, \psi \left( \frac{1}{\beta \,s}\right) \right) \right) -\frac{1}{\beta ^2\,s^2}\,} \times {}\nonumber \\&\qquad \times \frac{-\psi \left( \frac{1}{\beta \,s}\right) }{\beta \,s}\, \frac{\psi '\left( \frac{1}{\beta \,s\cos \vartheta }\right) }{\psi \left( \frac{1}{\beta \,s\cos \vartheta }\right) ^2}\, \frac{\sin \vartheta }{\cos ^2\vartheta }~\mathrm {d}\vartheta \nonumber \\&\quad =-\frac{\psi \left( \frac{1}{\beta \,s}\right) ^3}{\beta ^2\,s^2} \int \limits _0^{\pi /2}\frac{\psi '\left( \frac{1}{\beta \,s\cos \vartheta }\right) }{\psi \left( \frac{1}{\beta \,s\cos \vartheta }\right) ^4}\, \frac{\sin ^2\vartheta }{\cos ^3\vartheta }~\mathrm {d}\vartheta \end{aligned}$$
(81)

where the inverse function has been cancelled due to \(\psi ^{-1}\circ \psi \equiv \mathrm {id}\). Inserting this into (76) and rewriting \(\psi \) into \(\nu \) via (78) and

$$\begin{aligned} \psi '(q) = \nu \left( \frac{1}{q}\right) -\frac{1}{q}\,\nu '\left( \frac{1}{q}\right) \end{aligned}$$
(82)

gives

$$\begin{aligned} g(s)&=\frac{3}{\beta ^4s^4}\! \int \limits _0^{\pi /2} \frac{\nu (\beta \,s\cos \vartheta )-\beta \,s\cos \vartheta \, \nu '(\beta \,s\cos \vartheta )}{\frac{1}{\beta ^4s^4\cos ^4\vartheta }\,\nu (\beta \,s\cos \vartheta )^4}\, \frac{\sin ^2\vartheta }{\cos ^3\vartheta }~\mathrm {d}\vartheta \nonumber \\&=3\int \limits _0^{\pi /2} \frac{\sin ^2\vartheta \cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3} ~\mathrm {d}\vartheta \nonumber \\&\quad -3\,\beta \,s \int \limits _0^{\pi /2}\frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4}\sin ^2\vartheta \cos ^2\vartheta ~\mathrm {d}\vartheta \;. \end{aligned}$$
(83)

Integration by parts using (72) gives for the first summand

$$\begin{aligned}&\int \limits _0^{\pi /2} \frac{\sin ^2\vartheta \cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3} ~\mathrm {d}\vartheta = \int \limits _0^{\pi /2} \frac{\sin \vartheta \cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}\, \frac{\sin (2\vartheta )}{2}~\mathrm {d}\vartheta \nonumber \\&\quad = \left[ \frac{\sin \vartheta }{\nu (\beta \,s\cos \vartheta )^3}\, \left( -\frac{1}{4}\cos (2\vartheta )\right) \right] _{\vartheta =0}^{\vartheta =\pi /2}\nonumber \\&\qquad +\frac{1}{4}\int \limits _0^{\pi /2} \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}\,\cos (2\vartheta ) ~\mathrm {d}\vartheta \nonumber \\&\qquad +\frac{3}{4}\,\beta \,s\int \limits _0^{\pi /2} \frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4} \sin ^2\vartheta \cos (2\vartheta )~\mathrm {d}\vartheta \nonumber \\&\quad =\frac{1}{4}+\frac{1}{4}\int \limits _0^{\pi /2} \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}~\mathrm {d}\vartheta -\frac{1}{2}\int \limits _0^{\pi /2} \frac{\cos \vartheta \sin ^2\vartheta }{\nu (\beta \,s\cos \vartheta )^3} ~\mathrm {d}\vartheta \nonumber \\&\qquad +\frac{3}{4}\,\beta \,s\int \limits _0^{\pi /2} \frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4} \sin ^2\vartheta \cos (2\vartheta )~\mathrm {d}\vartheta \end{aligned}$$
(84)

and after reordering of terms and division by \(3/2\)

$$\begin{aligned}&\int \limits _0^{\pi /2}\frac{\sin ^2\vartheta \cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3} ~\mathrm {d}\vartheta = \frac{1}{6} +\frac{1}{6}\int \limits _0^{\pi /2} \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}~\mathrm {d}\vartheta \nonumber \\&\qquad +\frac{1}{2}\,\beta \,s\int \limits _0^{\pi /2} \frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4} \sin ^2\vartheta \cos (2\vartheta )~\mathrm {d}\vartheta \;. \end{aligned}$$
(85)

Making once more use of (72), we calculate

$$\begin{aligned}&\int \limits _0^{\pi /2} \frac{\cos \vartheta }{\nu (\beta \,s\cos \vartheta )^3}~\mathrm {d}\vartheta = \underbrace{\left[ \frac{\sin \vartheta }{\nu (\beta \,s\cos \vartheta )^3}\right] _{\vartheta =0}^{\vartheta =\pi /2}}_{{}=1}\nonumber \\&\qquad -3\,\beta \,s\int \limits _0^{\pi /2}\frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4} \sin ^2\vartheta ~\mathrm {d}\vartheta \;. \end{aligned}$$
(86)

Substituting (85) and (86) into (83) eventually leads to

$$\begin{aligned} g(s)&= 1-3\,\beta \,s\int \limits _0^{\pi /2} \frac{\nu '(\beta \,s\cos \vartheta )}{\nu (\beta \,s\cos \vartheta )^4}\sin ^2\vartheta (\sin ^2\vartheta +\cos ^2\vartheta ) ~\mathrm {d}\vartheta \nonumber \\&=1-\frac{3}{2}\,\beta \,s\,\tilde{J}_1(\beta \,s) \end{aligned}$$
(87)

in accordance with the representation from Corollary 3. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welk, M. Analysis of Amoeba Active Contours. J Math Imaging Vis 52, 37–54 (2015). https://doi.org/10.1007/s10851-014-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0524-1

Keywords

Navigation