Skip to main content
Log in

Interval-Valued and Intuitionistic Fuzzy Mathematical Morphologies as Special Cases of \(\mathbb{L}\)-Fuzzy Mathematical Morphology

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted.

The concept of \(\mathbb{L}\)-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of \(\mathbb{L}\)-fuzzy sets forms a complete lattice whenever the underlying set \(\mathbb{L}\) constitutes a complete lattice. Based on these observations, we develop a general approach towards \(\mathbb{L}\)-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of \(\mathbb{L}\)-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanassov, K.: Intuitionistic fuzzy sets. Tech. rep., Bulgarian Academy of Science, Central Techn. Library (1983)

  2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(3), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.: Intuitionistic Fuzzy Sets. Physica Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  4. Atanassov, K.: Remarks on the conjunctions, disjunctions and implications of the intuitionistic fuzzy logic. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8(1), 55–65 (2001)

    MathSciNet  Google Scholar 

  5. Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atanassov, K., Gargov, G.: Elements of intuitionistic fuzzy logic. Fuzzy Sets Syst. 95(1), 39–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bandler, W., Kohout, L.: Fuzzy power sets and fuzzy implication operators. Fuzzy Sets Syst. 4(1), 13–30 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic, Hingham (2003)

    MATH  Google Scholar 

  9. Birkhoff, G.: Lattice Theory, 3 edn. Am. Math. Soc., Providence (1993)

    Google Scholar 

  10. Bloch, I.: Dilation and erosion of spatial bipolar fuzzy sets. In: Applications of Fuzzy Sets Theory. Lecture Notes in Computer Science, vol. 4578, pp. 385–393 (2007)

    Chapter  Google Scholar 

  11. Bloch, I.: Bipolar fuzzy mathematical morphology for spatial reasoning. In: Mathematical Morphology and Its Application to Signal and Image Processing. Lecture Notes in Computer Science, vol. 5720, pp. 24–34 (2009)

    Chapter  Google Scholar 

  12. Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160(13), 1858–1867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bloch, I.: Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inf. Sci. 181(10), 2002–2015 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer, Berlin (2007). Chap. 14

    Chapter  Google Scholar 

  15. Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28(9), 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  16. Braga-Neto, U., Goutsias, J.: Supremal multiscale signal analysis. SIAM J. Math. Anal. 36(1), 94–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cornelis, C., Descrijver, G., Kerre, E.E.: Classification of intuitionistic fuzzy implicators: an algebraic approach. In: Proceedings of the 6th Joint Conference on Information Sciences, pp. 105–108 (2002)

    Google Scholar 

  18. Cornelis, C., Descrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application. International Journal of Approximate Reasoning 35 (2004)

  19. Cornelis, C., Kerre, E.E.: Inclusion measures in intuitionistic fuzzy set theory. In: Lecture Notes in Computer Science, vol. 2711 (2003)

    Google Scholar 

  20. De Baets, B.: Fuzzy morphology: A logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Kluwer Academic, Norwell (1997)

    Google Scholar 

  21. De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology, part 1: basic concepts. Int. J. Gen. Syst. 23, 155–171 (1994)

    Article  Google Scholar 

  22. De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology, part 2: idempotence, convexity and decomposition. Int. J. Gen. Syst. 23, 307–322 (1995)

    Article  MATH  Google Scholar 

  23. Deng, T., Chen, Y.: Generalized fuzzy morphological operators. In: Fuzzy Systems and Knowledge Discovery. Lecture Notes in Computer Science, vol. 3614, pp. 275–284 (2005)

    Chapter  Google Scholar 

  24. Deng, T., Heijmans, H.: Grey-scale morphology based on fuzzy logic. J. Math. Imaging Vis. 16(2), 155–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deschrijver, G., Cornelis, C.: Representability in interval-valued fuzzy set theory. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 15(3), 345–361 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)

    Article  MathSciNet  Google Scholar 

  27. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 133, 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deschrijver, G., Kerre, E.E.: Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets Syst. 153, 229–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Deschrijver, G., Kerre, E.E.: Triangular norms and related operators in L*-fuzzy set theory. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 231–259. Elsevier, Amsterdam (2005). Chap. 8

    Chapter  Google Scholar 

  30. Deschrijver, G., Kerre, E.E.: On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Inf. Sci. 177, 1860–1866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dubois, D., Gottwald, S., Hajek, P., Kacprzy, J., Prade, H.: Terminological difficulties in fuzzy set theory—the case of intuitionistic fuzzy sets. Fuzzy Sets Syst. 156, 485–491 (2005)

    Article  MATH  Google Scholar 

  32. Goetcherian, V.: From binary to grey tone image processing using fuzzy logic concepts. Pattern Recognit. 12(1), 7–15 (1980)

    Article  Google Scholar 

  33. Goguen, J.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grattan-Guinness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Log. Grundl. Math. 22, 149–160 (1975)

    Article  MathSciNet  Google Scholar 

  35. Haralick, R., Shapiro, L.: Computer and Robot Vision, vol. I. Addison-Wesley, New York (1992)

    Google Scholar 

  36. Haralick, R., Sternberg, S., Zhuang, X.: Image analysis using mathematical morphology: Part I. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987)

    Article  Google Scholar 

  37. Heijmans, H.: Morphological Image Operators. Academic Press, New York (1994)

    MATH  Google Scholar 

  38. Heijmans, H., Keshet, R.: Inf-semilattice approach to self-dual morphology. Journal of Mathematical Imaging and Vision 17 (2002)

  39. Heijmans, H., Ronse, C.: The algebraic basis of mathematical morphology: I. Dilations and erosions. Comput. Vis. Graph. Image Process. 50, 245–295 (1990)

    Article  MATH  Google Scholar 

  40. Herman, G.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, New York (1980)

    MATH  Google Scholar 

  41. Htun, Y.Y., Aye, K.K.: Fuzzy mathematical morphology approach in image processing. In: World Academy of Science, Engineering and Technology, vol. 42, pp. 659–665 (2008)

    Google Scholar 

  42. Jahn, K.: Interval-wertige Mengen. Math. Nachr. 68, 115–132 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jain, A.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  44. Kim, C.: Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Trans. Image Process. 14(10), 1503–1511 (2005)

    Article  Google Scholar 

  45. Kitainik, L.: Fuzzy Decision Procedures with Binary Relations. Kluwer Academic, Norwell (1993)

    Book  MATH  Google Scholar 

  46. Maragos, P.: Lattice image processing: a unification of morphological and fuzzy algebraic systems. J. Math. Imaging Vis. 22(2–3), 333–353 (2005)

    Article  MathSciNet  Google Scholar 

  47. Matheron, G.: Elements Pour une Theorie des Milieux Poreux. Masson, Paris (1967)

    Google Scholar 

  48. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  49. Medina, J.: Adjoint pairs on interval-valued fuzzy sets. In: Applications of Information Processing and Uncertainty in Knowledge-Based Systems, Proceedings of IPMU 2010, Dortmund, Germany, June 2010, pp. 430–439 (2010)

    Chapter  Google Scholar 

  50. Mendel, J.M.: Computing with words: Zadeh, Turing, Popper and Occam. IEEE Comput. Intell. Mag. 2(4), 10–17 (2007)

    Article  MathSciNet  Google Scholar 

  51. Mendel, J.M., John, R., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  52. Mendel, J.M., Wu, H.: Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems. IEEE Trans. Fuzzy Syst. 14(6), 781–792 (2007)

    Article  Google Scholar 

  53. Mendel, J.M., Wu, H.: Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 2, inverse problems. IEEE Trans. Fuzzy Syst. 15(2), 301–308 (2007)

    Article  MathSciNet  Google Scholar 

  54. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)

    Article  MATH  Google Scholar 

  55. Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–45 (1990)

    Article  Google Scholar 

  56. Miqueles, E.X.: RAFT: Reconstruction Algorithms for Tomography, http://www.milab.ime.unicamp.br/, University of Campinas, Dept. of Applied Mathematics, Campinas, SP, Brazil

  57. Nachtegael, M., Kerre, E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst. 124(1), 73–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nachtegael, M., Sussner, P., Melange, T., Kerre, E.: Modelling numerical and spatial uncertainty in grayscale image capture using fuzzy set theory. In: Proceedings of the North-American Simulation Technology Conference 2008, Montreal, Canada, Aug. 2008, pp. 15–22 (2008)

    Google Scholar 

  59. Nachtegael, M., Sussner, P., Melange, T., Kerre, E.: Some aspects of interval-valued and intuitionistic fuzzy mathematical morphology. In: Proceedings of the 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing, Las Vegas, USA, July 2008, pp. 538–543 (2008)

    Google Scholar 

  60. Nachtegael, M., Sussner, P., Melange, T., Kerre, E.: On the role of complete lattices in mathematical morphology: From tool to uncertainty model. Information Sciences 181(10), 1971–1988 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Niewiadomski, A.: Interval-valued and interval type-2 fuzzy sets: A subjective comparison. In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, July 2007, pp. 1198–1203 (2007)

    Google Scholar 

  62. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press Complex Adaptive Systems (1998)

    MATH  Google Scholar 

  63. Pitas, I., Venetsanopoulos, A.: Morphological shape decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 38–45 (1990)

    Article  Google Scholar 

  64. Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundam. Inform. 41, 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  65. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process. 21(2), 129–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 35–80. Wiley, New York (2010). Chap. 2

    Google Scholar 

  67. Sambuc, R.: Fonctions Φ-floues. Application l’aide au diagnostic en pathologie tyroidienne. PhD thesis

  68. Serra, J.: Introduction a la morphologie mathématique. Booklet no. 3, Cahiers du Centre de Morphologie Mathématique, Fontainebleau, France (1969)

  69. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  70. Serra, J.: Image Analysis and Mathematical Morphology. In: Theoretical Advances, vol. 2. Academic Press, New York (1988)

    Google Scholar 

  71. Sinha, D., Dougherty, E.R.: A general axiomatic theory of intrinsically fuzzy mathematical morphologies. IEEE Trans. Fuzzy Syst. 3(4), 389–403 (1995)

    Article  Google Scholar 

  72. Sinha, D., Dougherty, R.: Fuzzification of set inclusion: theory and applications. Fuzzy Sets Syst. 55(1), 15–42 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sinha, D., Sinha, P., Dougherty, E., Batman, S.: Design and analysis of fuzzy morphological algorithms for image processing. IEEE Trans. Fuzzy Syst. 5(4), 570–583 (1997)

    Article  Google Scholar 

  74. Sobania, A., Evans, J.P.O.: Morphological corner detector using paired triangular structuring elements. Pattern Recognit. 38(7), 1087–1098 (2005)

    Article  MATH  Google Scholar 

  75. Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  76. Sternberg, S.: Grayscale morphology. Comput. Vis. Graph. Image Process. 35, 333–355 (1986)

    Article  Google Scholar 

  77. Sussner, P., Esmi, E.: Morphological perceptrons with competitive learning: Lattice-theoretical framework and constructive learning algorithm. Inf. Sci. 181(10), 1929–1950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sussner, P., Valle, M.E.: Implicative fuzzy associative memories. IEEE Trans. Fuzzy Syst. 14(6), 793–807 (2006)

    Article  Google Scholar 

  79. Sussner, P., Valle, M.E.: Morphological and certain fuzzy morphological associative memories for classification and prediction. In: Kaburlassos, V., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, vol. 67, pp. 149–173. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  80. Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)

    Article  MathSciNet  Google Scholar 

  81. Sussner, P., Valle, M.E.: Fuzzy associative memories and their relationship to mathematical morphology. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing. Wiley, New York (2008). Chap. 33

    Google Scholar 

  82. Tretiak, O., Metz, C.E.: The exponencial radon transform. SIAM J. Appl. Math. 39, 341–354 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  83. Türkşen, I.B.: Knowledge representation and approximate reasoning with type 2 fuzzy sets. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Mar. 1995, pp. 1911–1917 (1995)

    Google Scholar 

  84. Uncu, Ö., Türkşen, I.B.: Discrete interval type 2 fuzzy system models using uncertainty in learning parameters. IEEE Trans. Fuzzy Syst. 15(1), 90–106 (2007)

    Article  Google Scholar 

  85. Valle, M.E., Sussner, P.: A general framework for fuzzy morphological associative memories. Fuzzy Sets Syst. 159(7), 747–768 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  86. Vince, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  87. Wang, G., He, Y.: Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy Sets Syst. 110(2), 271–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  88. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  89. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—i. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhang, W.-R.: Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: NAFIPS/IFIS/NASA ’94, Dec. 1994, pp. 305–309 (1994)

    Google Scholar 

  92. Zhang, W.-R., Zhang, L.: YinYang bipolar logic and bipolar fuzzy logic. Inf. Sci. 165(3–4), 265–287 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sussner.

Additional information

This work was partially supported by CNPq under grant No. 309608/2009-0 and by FAPESP under grant No. 2009/16284-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sussner, P., Nachtegael, M., Mélange, T. et al. Interval-Valued and Intuitionistic Fuzzy Mathematical Morphologies as Special Cases of \(\mathbb{L}\)-Fuzzy Mathematical Morphology. J Math Imaging Vis 43, 50–71 (2012). https://doi.org/10.1007/s10851-011-0283-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0283-1

Keywords

Navigation