Skip to main content
Log in

Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), apply a variational method on the log data or shrink their coefficients in a frame (e.g. a wavelet basis), and transform back the result using an exponential function.

We propose a method composed of several stages: we use the log-image data and apply a reasonable under-optimal hard-thresholding on its curvelet transform; then we apply a variational method where we minimize a specialized hybrid criterion composed of an 1 data-fidelity to the thresholded coefficients and a Total Variation regularization (TV) term in the log-image domain; the restored image is an exponential of the obtained minimizer, weighted in a such way that the mean of the original image is preserved. Our restored images combine the advantages of shrinkage and variational methods and avoid their main drawbacks. Theoretical results on our hybrid criterion are presented. For the minimization stage, we propose a properly adapted fast scheme based on Douglas-Rachford splitting. The existence of a minimizer of our specialized criterion being proven, we demonstrate the convergence of the minimization scheme. The obtained numerical results clearly outperform the main alternative methods especially for images containing tricky geometrical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Acar, R., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems. IEEE Trans. Image Process. 10(6), 1217–1229 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Achim, A., Bezerianos, A., Tsakalides, P.: Novel bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imag. 20(8), 772–783 (2001)

    Article  Google Scholar 

  4. Achim, A., Kuruoglu, E., Zerubia, J.: SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Trans. Image Process. 15(9), 2686–2693 (2006)

    Article  Google Scholar 

  5. Achim, A., Tsakalides, P., Bezerianos, A.: SAR image denoising via bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 41(8), 1773–1784 (2003)

    Article  Google Scholar 

  6. Antoniadis, A., Fan, J.: Regularization of wavelet approximations. J. Acoust. Soc. Am. 96(455), 939–967 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Antoniadis, A., Leporini, D., Pesquet, J.-C.: Wavelet thresholding for some classes of non-Gaussian noise. Stat. Neerl. 56(4), 434–453 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aubert, G., Aujol, J.-F.: A variational approach to remove multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imag. Vis. 34(3), 307–327 (2009)

    Article  MathSciNet  Google Scholar 

  11. Belge, M., Kilmer, M., Miller, E.: Wavelet domain image restoration with adaptive edge-preserving regularization. IEEE Trans. Image Process. 9(4), 597–608 (2000)

    Article  MATH  Google Scholar 

  12. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bobichon, Y., Bijaoui, A.: Regularized multiresolution methods for astronomical image enhancement. Exp. Astron. 7, 239–255 (1997)

    Article  Google Scholar 

  14. Candès, E.J., Donoho, D., Ying, L.: Fast discrete curvelet transforms. SIAM Multiscale Model. Simul. 5(3), 861–899 (2005)

    Article  Google Scholar 

  15. Candès, E.J., Guo, F.: New multiscale transforms, minimum total variation synthesis. Applications to edge-preserving image reconstruction. Signal Process. 82 (2002)

  16. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Technical report, CMAP-04, Ecole Polytechnique, France (2004)

  17. http://www.cmap.polytechnique.fr/~antonin/software/

  18. Chambolle, A.: An algorithm for total variation minimization and application. J. Math. Imag. Vis. 20(1) (2004)

  19. Chambolle, A.: Total variation minimization and a class of binary MRF models. Lect. Notes Comput. Sci. 3757, 136–152 (2005)

    Article  Google Scholar 

  20. Chan, T.F., Zhou, H.M.: Total variation improved wavelet thresholding in image compression. In: Proc. of the IEEE Int. Conf. on Image Processing, vol. 2, pp. 391–394. IEEE Press, New York (2000)

    Google Scholar 

  21. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)

    Article  Google Scholar 

  22. Chesneau, C., Fadili, M.J., Starck, J.-L.: Stein block thresholding for image denoising. Appl. Comput. Harmon. Anal. Revised

  23. Coifman, R.R., Donoho, D.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Department of Statistics (1995)

  24. Coifman, R.R., Sowa, A.: Combining the calculus of variations and wavelets for image enhancement. Appl. Comput. Harmon. Anal. 9(1), 1–18 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5) (2004)

  26. Combettes, P.L., Pesquet, J.-C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  27. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Darbon, J., Sigelle, M., Tupin, F.: The use of levelable regularization functions for MRF restoration of SAR images while preserving reflectivity. In: Proc. of IS&T/SPIE 19th Annual Symposium Electronic Imaging, p. 6490, San Jose (USA) (Feb. 2007)

  29. Denis, L., Tupin, F., Darbon, J., Sigelle, M.: SAR Image Regularization with Fast Approximate Discrete Minimization. IEEE Trans. Image Process. 18(7), 1588–1600 (2009)

    Article  Google Scholar 

  30. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Acoust. Soc. Am. 90 (1995)

  32. Durand, S., Nikolova, M.: Denoising of frame coefficients using l 1 data-fidelity term and edge-preserving regularization. SIAM J. Multiscale Model. Simul. 6(2), 547–576 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24(5), 1754–1767 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program., Ser. A and B 55(3), 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program., Ser. B 111(1) (2008)

  36. Froment, J., Durand, S.: Artifact free signal denoising with wavelets. In: Proceedings of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 6 (2001)

  37. Fukuda, S., Hirosawa, H.: Suppression of speckle in synthetic aperture radar images using wavelet. Int. J. Remote Sens. 19(3), 507–519 (1998)

    Article  Google Scholar 

  38. Gabay, D.: In: Fortin, M., Glowinski, R. (eds.) Applications of the Method of Multipliers to Variational Inequalities. North-Holland, Amsterdam (1983)

    Google Scholar 

  39. Huang, Y.-M., Ng, M.K., Wen, Y.-W.: A new total variation method for multiplicative noise removal. SIAM J. Imag. Sci. 2(1), 20–40 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Krissian, K., Westin, C.-F., Kikinis, R., Vosburgh, K.G.: Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

    Article  MathSciNet  Google Scholar 

  41. Lions, P.-L.: Une méthode itérative de resolution d’une inéquation variationnelle. Isr. J. Math. 31(2), 204–208 (1978)

    Article  MATH  Google Scholar 

  42. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Malgouyres, F.: Mathematical analysis of a model which combines total variation and wavelet for image restoration. J. Inf. Process. 2(1), 1–10 (2002)

    Google Scholar 

  44. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Process. 11(12), 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  45. Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci., Sér. A Math. 255, 2897–2899 (1962)

    MATH  MathSciNet  Google Scholar 

  46. Moulin, P., Liu, J.: Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans. Image Process. 45(3), 909–919 (1999)

    MATH  MathSciNet  Google Scholar 

  47. Nesterov, Y.: Gradient methods for minimizing composite objective function. Technical report, Université Catholique de Louvain, Center for Operations Research and Econometrics (CORE), CORE Discussion Papers 2007076 (Sep. 2007)

  48. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imag. Vis. 20(1) (2004)

  51. Nikolova, M.: Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. J. Math. Imag. Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  52. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. SIAM J. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72 (1979)

  54. Pizurica, A., Wink, A.M., Vansteenkiste, E., Philips, W., Roerdink, J.B.T.M.: A review of wavelet denoising in MRI and ultrasound brain imaging. Curr. Med. Imag. Rev. 2(2), 247–260 (2006)

    Article  Google Scholar 

  55. Polyak, B.: Introduction to Optimization. Optimization Software, Inc., Publications Division, New York (1987)

    Google Scholar 

  56. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, the Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  57. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  58. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proc. IEEE Int. Conf. on Image Processing, Austin, TX, vol. 1, pp. 31–35 (Nov. 1994)

  59. Rudin, L., Lions, P.-L., Osher, S.: In: Osher, S., Paragios, N. (eds.) Multiplicative Denoising and Deblurring: Theory and Algorithms, pp. 103–119. Springer, Berlin (2003)

    Google Scholar 

  60. Rudin, L., Osher, S., Fatemi, C.: Nonlinear total variation based noise removal algorithm. Physica D 60, 259–268 (1992)

    MATH  Google Scholar 

  61. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imag. Sci. 1(3), 294–321 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  62. Simoncelli, E.P.: Bayesian Denoising of Visual Images in the Wavelet Domain. Lecture Notes in Statistics, vol. 41. Springer, Berlin (1999)

    Google Scholar 

  63. Simoncelli, E.P., Adelson, E.H.: Noise removal via Bayesian wavelet coding. In: Proc. of the IEEE Int. Conf. on Image Processing, pp. 379–382. Lausanne, Switzerland (Sep. 1996)

  64. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  65. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(1), 431–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  66. Tur, M., Chin, C., Goodman, J.W.: When is speckle noise multiplicative? Appl. Opt. 21(7), 1157–1159 (1982)

    Article  Google Scholar 

  67. Ulaby, F., Dobson, M.C.: Handbook of Radar Scattering Statistics for Terrain. Artech House, Norwood (1989)

    Google Scholar 

  68. Vogel, C.R., Oman, M.E.: Iterative method for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  69. Wang, G., Zhang, J., Pan, G.-W.: Solution of inverse problems in image processing by wavelet expansion. IEEE Trans. Image Process. 4(5), 579–593 (1995)

    Article  Google Scholar 

  70. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  Google Scholar 

  71. Xie, H., Pierce, L.E., Ulaby, F.T.: SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans. Geosci. Remote Sens. 40(10), 2196–2212 (2002)

    Article  Google Scholar 

  72. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  73. Zhu, M., Stephen J. Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized image restoration. Technical report, CAM 08-33, UCLA (October 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mila Nikolova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, S., Fadili, J. & Nikolova, M. Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients. J Math Imaging Vis 36, 201–226 (2010). https://doi.org/10.1007/s10851-009-0180-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0180-z

Navigation