Skip to main content
Log in

Maximizing the Predictivity of Smooth Deformable Image Warps through Cross-Validation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Estimating smooth image warps from landmarks is an important problem in computer vision and medical image analysis. The standard paradigm is to find the model parameters by minimizing a compound energy including a data term and a smoother, balanced by a ‘smoothing parameter’ that is usually fixed by trial and error.

We point out that warp estimation is an instance of the general supervised machine learning problem of fitting a flexible model to data, and propose to learn the smoothing parameter while estimating the warp. The leading idea is to depart from the usual paradigm of minimizing the energy to the one of maximizing the predictivity of the warp, i.e. its ability to do well on the entire image, rather than only on the given landmarks. We use cross-validation to measure predictivity, and propose a complete framework to solve for the desired warp. We point out that the well-known non-iterative closed-form for the leave-one-out cross-validation score is actually a good approximation to the true score and show that it extends to the warp estimation problem by replacing the usual vector two-norm by the matrix Frobenius norm. Experimental results on real data show that the procedure selects sensible smoothing parameters, very close to user selected ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, D.M.: The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16, 125–127 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  4. Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Visualization in Biomedical Imaging (1996)

  5. Burrage, K., Williams, A., Erhel, J., Pohl, B.: The implementation of a generalized cross validation algorithm using deflation techniques for linear systems. Technical report, Seminar fur Angewandte Mathematik, July 1994

  6. Christensen, G.E., He, J.: Consistent nonlinear elastic image registration. In: Workshop on Mathematical Methods in Biomedical Image Analysis (2001)

  7. de Bruijne, M., Lund, M.T., Tankó, L.B., Pettersen, P.C., Nielsen, M.: Quantitative vertebral morphometry using neighbor-conditional shape models. Med. Image Anal. 11(5), 503–512 (2007)

    Article  Google Scholar 

  8. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Anal. Numér. 10, 5–12 (1976)

    MathSciNet  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comput. Vis. Graph. Image Process. 24(6), 381–395 (1981)

    MathSciNet  Google Scholar 

  10. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic registration of medical images. Image Vis. Comput. 19(1), 87–96 (2001)

    Article  Google Scholar 

  11. Genant, H., Wu, C., van Kuijk, C., Nevitt, M.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner Res. 8(9), 1137–1148 (1993)

    Article  Google Scholar 

  12. Golub, G.H., von Matt, U.: Generalized cross-validation for large-scale problems. J. Comput. Graph. Stat. 6(1), 1–34 (1997)

    Article  Google Scholar 

  13. Hawkins, D.M., Yin, X.: A faster algorithm for ridge regression of reduced rank data. Comput. Stat. Data Anal. 40(2), 253–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kanatani, K.: Geometric information criterion for model selection. Int. J. Comput. Vis. 26(3), 171–189 (1998)

    Article  Google Scholar 

  15. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Google Scholar 

  16. Marsland, S., Twining, C.J., Taylor, C.J.: A minimum description length objective function for groupwise non-rigid image registration. In: Image and Vision Computing (2007)

  17. Maybank, S., Sturm, P.: MDL, collineations and the fundamental matrix. In: British Machine Vision Conference (1999)

  18. Modersitzki, J.: Numerical Methods for Image Registration. Oxford Science, Oxford (2004)

    MATH  Google Scholar 

  19. Nielsen, M., Johansen, P.: A PDE solution of Brownian warping. In: European Conference on Computer Vision (2004)

  20. Nielsen, M., Johansen, P., Jackson, A.D., Lautrup, B.: Brownian warps: a least committed prior for non-rigid registration. In: Medical Image Computing and Computer-Assisted Intervention (2002)

  21. Pilet, J., Lepetit, V., Fua, P.: Fast non-rigid surface detection, registration and realistic augmentation. Int. J. Comput. Vis. 76(2), 109–122 (2008)

    Article  Google Scholar 

  22. Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity in learning theory. Nature 458, 419–422 (2004)

    Article  Google Scholar 

  23. Rifkin, R.M., Lippert, R.A.: Notes on regularized least squares. Technical Report MIT-CSAIL-TR-2007-025, MIT, May 2007

  24. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  25. Szeliski, R., Coughlan, J.: Spline-based image registration. Int. J. Comput. Vis. 22(3), 199–218 (1997)

    Article  Google Scholar 

  26. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int. J. Comput. Vis. 50(1), 27–45 (2002)

    Article  Google Scholar 

  27. Wahba, G.: Splines Models for Observational Data. SIAM, Philadelphia (1990)

    Google Scholar 

  28. Wahba, G., Wold, S.: A completely automatic French curve: fitting spline functions by cross-validation. Commun. Stat. 4, 1–17 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Bartoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoli, A. Maximizing the Predictivity of Smooth Deformable Image Warps through Cross-Validation. J Math Imaging Vis 31, 133–145 (2008). https://doi.org/10.1007/s10851-007-0062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0062-1

Keywords

Navigation