Skip to main content
Log in

The k-Homotopic Thinning and a Torus-Like Digital Image in Z n

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In order to discuss digital topological properties of a digital image (X,k), many recent papers have used the digital fundamental group and several digital topological invariants such as the k-linking number, the k-topological number, and so forth. Owing to some difficulties of an establishment of the multiplicative property of the digital fundamental group, a k-homotopic thinning method can be essentially used in calculating the digital fundamental group of a digital product with k-adjacency. More precisely, let \(\mathit{SC}_{k_{i}}^{n_{i},l_{i}}\) be a simple closed k i -curve with l i elements in \(\mathbf{Z}^{n_{i}},i\in\{1,2\}\) . For some k-adjacency of the digital product \(\mathit{SC}_{k_{1}}^{n_{1},l_{1}}\times\mathit{SC}_{k_{2}}^{n_{2},l_{2}}\subset\mathbf{Z}^{n_{1}+n_{2}}\) which is a torus-like set, proceeding with the k-homotopic thinning of \(\mathit{SC}_{k_{1}}^{n_{1},l_{1}}\times\mathit{SC}_{k_{2}}^{n_{2},l_{2}}\) , we obtain its k-homotopic thinning set denoted by DT k . Writing an algorithm for calculating the digital fundamental group of \(\mathit{SC}_{k_{1}}^{n_{1},l_{1}}\times\mathit {SC}_{k_{2}}^{n_{2},l_{2}}\) , we investigate the k-fundamental group of \((\mathit{SC}_{k_{1}}^{n_{1},l_{1}}\times\mathit{SC}_{k_{2}}^{n_{2},l_{2}},k)\) by the use of various properties of a digital covering (Z×Z,p 1×p 2,DT k ), a strong k-deformation retract, and algebraic topological tools. Finally, we find the pseudo-multiplicative property (contrary to the multiplicative property) of the digital fundamental group. This property can be used in classifying digital images from the view points of both digital k-homotopy theory and mathematical morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge, C.: Graphs and Hypergraphs, 2nd edn. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  2. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognit. Lett. 15, 1003–1011 (1994)

    Article  Google Scholar 

  3. Bertrand, G., Malgouyres, R.: Some topological properties of discrete surfaces. J. Math. Imaging Vis. 11, 207–221 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borsuk, K.: Theory of Retracts. Polish Scientific Publishers, Warsaw (1967)

    MATH  Google Scholar 

  5. Boxer, L.: Digitally continuous functions. Pattern Recognit. Lett. 15, 833–839 (1994)

    Article  MATH  Google Scholar 

  6. Boxer, L.: A classical construction for the digital fundamental group. J. Math. Imaging Vis. 10, 51–62 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, L., Cooley, D.H., Zhang, J.: The equivalence between definitions of digital images. Inf. Sci. 115, 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fourey, S., Malgouyres, R.: A concise characterization of 3D-simple points. Discrete Appl. Math. 125(1), 59–80 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han, S.E.: Computer topology and its applications. Honam Math. J. 25(1), 153–162 (2003)

    MathSciNet  Google Scholar 

  10. Han, S.E.: Minimal digital pseudotorus with k-adjacency. Honam Math. J. 26(2), 237–246 (2004)

    MathSciNet  Google Scholar 

  11. Han, S.E.: Algorithm for discriminating digital images w.r.t. a digital (k 0,k 1)-homeomorphism. J. Appl. Math. Comput. 18(1–2), 505–512 (2005)

    Google Scholar 

  12. Han, S.E.: Non-product property of the digital fundamental group. Inf. Sci. 171(1–3), 73–91 (2005)

    Article  Google Scholar 

  13. Han, S.E.: Digital coverings and their applications. J. Appl. Math. Comput. 18(1–2), 487–495 (2005)

    Google Scholar 

  14. Han, S.E.: On the simplicial complex stemmed from a digital graph. Honam Math. J. 27(1), 115–129 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Han, S.E.: Connected sum of digital closed surfaces. Inf. Sci. 176(3), 332–348 (2006)

    Article  MATH  Google Scholar 

  16. Han, S.E.: Discrete homotopy of a closed k-surface. In: Proceeding of IWCIA 2006. LNCS, vol. 4040, pp. 214–225. Springer, Berlin (2006)

    Google Scholar 

  17. Han, S.E.: Erratum to “Non-product property of the digital fundamental group”. Inf. Sci. 176(1), 215–216 (2006)

    Article  Google Scholar 

  18. Han, S.E.: Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces. Inf. Sci. 176(2), 120–134 (2006)

    Article  MATH  Google Scholar 

  19. Han, S.E.: Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces. Inf. Sci. 177(16), 3314–3326 (2007)

    Article  MATH  Google Scholar 

  20. Han, S.E.: Remarks on digital k-homotopy equivalence. Honam Math. J. 29(1), 101–118 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Han, S.E.: The fundamental group of a closed k-surface. Inf. Sci. 177(18), 3731–3748 (2007)

    Article  MATH  Google Scholar 

  22. Han, S.E.: Strong k-deformation retract and its applications. J. Korean Math. Soc. 44(6), 1479–1503 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Han, S.E.: Equivalent (k 0,k 1)-covering and generalized digital lifting. Inf. Sci. 178(2), 550–561 (2008)

    Article  MATH  Google Scholar 

  24. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Google Scholar 

  25. Herman, G.T.: Oriented surfaces in digital spaces. CVGIP: Graph. Models Image Process. 55, 381–396 (1993)

    Article  Google Scholar 

  26. Kenmochi, Y., Imiya, A., Ezquerra, N.: Polyhedra generation from lattice points. In: LNCS, vol. 1176, pp. 127–138 (1996)

  27. Khalimsky, E.: Motion, deformation, and homotopy in finite spaces, In: Proceedings IEEE International Conferences on Systems, Man, and Cybernetics, pp. 227–234 (1987)

  28. Kong, T.Y., Rosenfeld, A.: Topological Algorithms for the Digital Image Processing. Elsevier, Amsterdam (1996)

    Book  Google Scholar 

  29. Kopperman, R., Meyer, R., Wilson, R.G.: A Jordan surface theorem for three-dimensional digital spaces. Discrete Comput. Geom. 6, 155–161 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Malgouyres, R., Bertrand, G.: A new local property of strong n-surfaces. Pattern Recognit. Lett. 20, 417–428 (1999)

    Article  Google Scholar 

  31. Massey, W.S.: Algebraic Topology. Springer, New York (1977)

    Google Scholar 

  32. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three dimensional digital images. Inf. Control 51, 227–247 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rosenfeld, A.: Continuous functions on digital pictures. Pattern Recognit. Lett. 4, 177–184 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Eon Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SE. The k-Homotopic Thinning and a Torus-Like Digital Image in Z n . J Math Imaging Vis 31, 1–16 (2008). https://doi.org/10.1007/s10851-007-0061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0061-2

Keywords

Navigation