Skip to main content
Log in

Discrete Dynamical System Framework for Construction of Connections between Critical Regions in Lattice Height Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We define a new mathematical model for the topological study of lattice height data. A discrete multivalued dynamical system framework is used to establish discrete analogies of a Morse function, its gradient field, and its stable and unstable manifolds in order to interpret functions numerically given on finite sets of pixels. We present efficient algorithms detecting critical components of a height function f and displaying connections between them by means of a graph, called the Morse connections graph whose nodes represent the critical components of f and edges show the existence of connecting trajectories between nodes. This graph encodes efficiently the topological structure of the data and makes it easy to manipulate for subsequent processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allili, M., Corriveau, D., Ziou, D.: Morse homology descriptor for shape characterization, In: Proc. of 17th International Conference on Pattern Recognition, vol. 4, pp. 27–30. (2004)

  2. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. In: Proc. 11th Sympos. Discrete Alg., pp. 918–926. (2000)

  3. Corriveau, D., Allili, M., Ziou, D.: Morse connections graph for shape representation. In: Lecture Notes in Computer Science, vol. 3708, pp. 219–226. Springer, New York (2005)

    Google Scholar 

  4. Edelsbrunner, H., Harer, J., Zomorodian, A.J.: Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Fomenko, A., Kunii, T.: Topological Modeling for Visualization. Springer, Tokyo (1997)

    MATH  Google Scholar 

  7. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fowler, R.J., Little, J.J.: Automatic extraction of irregular network digital terrain models. Comput. Graph. 13, 199–207 (1979)

    Article  Google Scholar 

  9. Griffin, L.D., Colchester, A.C.F.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image Vis. Comput. 13, 543–557 (1995)

    Article  Google Scholar 

  10. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, vol. 157. Springer, New York (2004)

    MATH  Google Scholar 

  11. Kaczynski, T., Mrozek, M.: Conley index for discrete multivalued dynamical systems. Topol. Appl. 65, 83–96 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koenderink, J.J., van Doorn, A.J.: The structure of two-dimensional scalar fields with applications to vision. Biol. Cybern. 33, 151–158 (1979)

    Article  MATH  Google Scholar 

  13. Matsumoto, Y.: An Introduction to Morse Theory. Mathematical Monographs, vol. 208. Am. Math. Soc., Providence (1997)

    Google Scholar 

  14. Maxwell, J.C.: On hills and dales. The Lond. Edinburg Dublin Philos. Mag. J. Sci. 40, 421–425 (1870)

    Google Scholar 

  15. McCord, C.K.: On the Hopf index and the Conley index. Trans. Am. Math. Soc. 313(2), 853–860 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Milnor, J.: Morse Theory. Princeton University, Princeton (1969)

    Google Scholar 

  17. Mischaikow, K.: The Conley Index Theory: A Brief Introduction. Banach Center Publications, vol. 47. Polish Acad. Sci., Warsaw (1999)

    Google Scholar 

  18. Morse, M.: Relations between the critical points of a real function on n independent variables. Trans. Am. Math. Soc. 27, 345–396 (1925)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nackman, L.R.: Two-dimensional critical point configuration graphs. IEEE Trans. Pattern Anal. Mach. Intell. 6, 442–450 (1984)

    Article  MATH  Google Scholar 

  20. Shinagawa, Y., Kunii, T.: Constructing a reeb graph automatically from cross sections. IEEE Comput. Graph. Appl. 11, 44–51 (1991)

    Article  Google Scholar 

  21. Takahashi, S., Ikeda, T., Shinagawa, Y., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Int. J. Eurographics Assoc. 14(3), C-181–C-192 (1995)

    Google Scholar 

  22. Weber, G.H., Scheuermann, G., Hamann, B.: Detecting critical regions in scalar fields. In: IEEE TCVG Symposium on Visualization, pp. 1–11 (2003)

  23. Zomorodian, A.J., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Derivière.

Additional information

M. Allili and T. Kaczynski supported by the NSERC of Canada discovery grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allili, M., Corriveau, D., Derivière, S. et al. Discrete Dynamical System Framework for Construction of Connections between Critical Regions in Lattice Height Data. J Math Imaging Vis 28, 99–111 (2007). https://doi.org/10.1007/s10851-007-0010-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0010-0

Keywords

Navigation