Skip to main content
Log in

Gradient Structure of Image in Scale Space

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We investigate the topological structure of an image and the hierarchical relationship between local and global structures provided by spatial gradients at different levels of scale. The gradient field curves link stationary points of the image including a local minimum at infinity, and construct the topological structure of the image. The evolution of the topological structure with respect to scale is analysed using pseudograph representation. The hierarchical relationships among the structures at different scales are expressed as trajectories of the stationary points in the scale space, which we call stationary curves. Each toppoint of the local extremum curve generically has a specific gradient field curve, which we call the antidirectional figure-flow curve. The antidirectional figure-flow curve connects between the toppoint and another local extremum to which the toppoint is subordinate. A point at infinity can also be connected to the toppoints of local minimum curves. These hierarchical relationships among the stationary points are expressed as a tree. As an application, we present the temporal segmentation of an image sequence based on the transition of the hierarchical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brain Web, http://www.bic.mni.mcgill.ca/brainweb/

  2. Computer Vision Laboratory at UMass, http://vis-www.cs.umass.edu/vislib/Motion/box/images.html

  3. Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. J. Differ. Equations 115(2), 368–401 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Damon, J.: Generic properties of solutions to partial differential equations. Arch. Ration. Mech. Analysis 140, 353–403 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Florack, L.M.J., Kuijper, A.: The topological structure of scale-space images. J. Math. Imaging Vis. 12(1), 65–79 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Griffin, L.D., Colchester, A.C.F.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image Vis. Comput. 13(7), 543–557 (1995)

    Article  Google Scholar 

  7. Griffin, L.D., Colchester, A.C.F., Robinson, G.P.: Scale and segmentation of grey-level images using maximum gradient paths. Image Vis. Comput. 10(6), 389–402 (1992)

    Article  Google Scholar 

  8. Iijima, T.: Basic theory on the normalization of pattern (in case of typical one-dimensional pattern). Bull. Electro-tech. Lab. 26, 368–388 (1962) (in Japanese)

    Google Scholar 

  9. Iijima, T.: Basic theory on the normalization of two-dimensional visual pattern. IEICE Jpn. 1, 15–22 (1963) (in Japanese)

    Google Scholar 

  10. Iijima, T.: Basic equation of figure and observational transformations. IEICE Jpn. Trans. C. 54-C, 37–38 (1971)

    MathSciNet  Google Scholar 

  11. Iijima, T.: Pattern Recognition. Corona Publisher, Tokyo (1973) (in Japanese)

    Google Scholar 

  12. Iijima, T.: The Fundamental Theory of Visual Information: The Foundation of the Pattern Recognition Problem. Corona Publisher, Tokyo (1999)

    Google Scholar 

  13. Imiya, A., Sugiura, T., Sakai, T., Kato, Y.: Temporal structure tree in digital linear scale space. In: Lecture Notes in Computer Science, vol. 2695, pp. 356–371. Springer, New York (2003)

    Google Scholar 

  14. Johansen, P.: On the classification of toppoints in scale space. J. Math. Imaging Vis. 4(1), 57–67 (1994)

    Article  Google Scholar 

  15. Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their toppoints in scale space. In: Proc. of Int. Conf. on Imag. Anal. and Pat. Recog., Paris, France, pp. 215–217 (1986)

  16. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  18. Kuijper, A.: The deep structure of Gaussian scale space images. PhD thesis, Utrecht University (2002)

  19. Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. J. Math. Imaging Vis. 18(2), 169–189 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lifshitz, L.M., Pizer, S.M.: A multiresolution hierarchical approach to image segmentation based on intensity extrema. IEEE Trans. Pattern Analysis Mach. Intell. 12(6), 529–540 (1990)

    Article  Google Scholar 

  21. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic, Boston (1994)

    Google Scholar 

  22. Loog, M., Duistermaat, J.J., Florack, L.M.J.: On the behavior of spatial critical points under Gaussian blurring. In: Lecture Notes in Computer Science, vol. 2106, pp. 183–192. Springer, New York (2001)

    Google Scholar 

  23. Olsen, O.F., Nielsen, M.: Generic events for the gradient squared with application to multi-scale segmentation. In: Lecture Notes in Computer Science, vol. 1252, pp. 101–112. Springer, New York (1997)

    Google Scholar 

  24. Otsu, N.: Mathematical studies on feature extraction in pattern recognition. Researches of The Electrotechnical Laboratory 818 (1981) (in Japanese)

  25. Sakai, T., Imiya, A.: Figure field analysis of linear scale-space image. In: Lecture Notes in Computer Science, vol. 3459, pp. 374–385. Springer, New York (2005)

    Google Scholar 

  26. Sakai, T., Imiya, A.: Scale-space hierarchy of singularities. In: Lecture Notes in Computer Science, vol. 3753, pp. 181–192. Springer, New York (2005)

    Google Scholar 

  27. Simmons, A., Arridge, S.R., Tofts, P.S., Barker, G.J.: Application of the Extremum Stack to Neurological MRI. IEEE Trans. Med. Imaging 17(3), 371–382 (1998)

    Article  Google Scholar 

  28. Weickert, J., Ishikawa, S., Imiya, A.: On the history of Gaussian scale-space axiomatics. In: Gaussian Scale-Space Theory. Computational Imaging and Vision Series, vol. 8, pp. 45–59. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  29. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Witkin, A.P.: Scale space filtering. In: Proc. of 8th Int. Joint Conf. on Artif. Intell., pp. 1019–1022. Karlsruhe, West Germany (1983)

  31. Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IEICE Jpn. Trans. D J68-D, 508–514 (1985) (in Japanese)

    Google Scholar 

  32. Zhao, N.-Y., Iijima, T.: A theory of feature extraction by the tree of stable view-points. IEICE Jpn. Trans. D J68-D, 1125–1135 (1985) (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, T., Imiya, A. Gradient Structure of Image in Scale Space. J Math Imaging Vis 28, 243–257 (2007). https://doi.org/10.1007/s10851-007-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0005-x

Keywords

Navigation