Skip to main content
Log in

Preferential Accessibility and Preferred Worlds

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

Modal accounts of normality in non-monotonic reasoning traditionally have an underlying semantics based on a notion of preference amongst worlds. In this paper, we motivate and investigate an alternative semantics, based on ordered accessibility relations in Kripke frames. The underlying intuition is that some world tuples may be seen as more normal, while others may be seen as more exceptional. We show that this delivers an elegant and intuitive semantic construction, which gives a new perspective on defeasible necessity. Technically, the revisited logic does not change the expressive power of our previously defined preferential modalities. This conclusion follows from an analysis of both semantic constructions via a generalisation of bisimulations to the preferential case. Reasoners based on the previous semantics therefore also suffice for reasoning over the new semantics. We complete the picture by investigating different notions of defeasible conditionals in modal logic that can also be captured within our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.

    Article  Google Scholar 

  • Askounis, D., Koutras, C., & Zikos, Y. (2012). Knowledge means ‘all’, belief means ‘most’. In L. Fariñas del Cerro, A. Herzig, & J. Mengin (Eds.), Proceedings of the 13th European conference on logics in artificial intelligence (JELIA), no. 7519 in LNCS (pp. 41–53). Berlin: Springer.

    Google Scholar 

  • Baltag, A., & Smets, S. (2006). Dynamic belief revision over multi-agent plausibility models. In W. van der Hoek & M. Wooldridge (Eds.), Proceedings of LOFT (pp. 11–24). Liverpool: University of Liverpool.

    Google Scholar 

  • Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In G. Bonanno, W. van der Hoek, & M. Wooldridge (Eds.), Logic and the foundations of game and decision theory (LOFT7), no. 3 in texts in logic and games (pp. 13–60). Amsterdam: Amsterdam University Press.

    Google Scholar 

  • Benferhat, S., Dubois, D., & Prade, H. (1999). Possibilistic and standard probabilistic semantics of conditional knowledge bases. Journal of Logic and Computation, 9(6), 873–895.

    Article  Google Scholar 

  • Blackburn, P., Benthem, J., & Wolter, F. (2006). Handbook of Modal Logic. Amsterdam: Elsevier North-Holland.

    Google Scholar 

  • Booth, R., Casini, G., Meyer, T., & Varzinczak, I. (2015). On the entailment problem for a logic of typicality. In Proceedings of the 24th international joint conference on artificial intelligence (IJCAI).

  • Booth, R., Meyer, T., & Varzinczak, I. (2012). PTL: A propositional typicality logic. In L. Fariñas del Cerro, A. Herzig, & J. Mengin (Eds.), Proceedings of the 13th European Conference on Logics in Artificial Intelligence (JELIA), no. 7519 in LNCS (pp. 107–119). Berlin: Springer.

    Google Scholar 

  • Booth, R., Meyer, T., & Varzinczak, I. (2013). A propositional typicality logic for extending rational consequence. In E. Fermé, D. Gabbay, & G. Simari (Eds.), Trends in belief revision and argumentation dynamics, studies in logic—Logic and cognitive systems (Vol. 48, pp. 123–154). London: King’s College Publications.

    Google Scholar 

  • Boutilier, C. (1994). Conditional logics of normality: A modal approach. Artificial Intelligence, 68(1), 87–154.

    Article  Google Scholar 

  • Britz, K., Casini, G., Meyer, T., & Varzinczak, I. (2013). Preferential role restrictions. In Proceedings of the 26th international workshop on description logics (pp. 93–106).

  • Britz, K., Heidema, J., & Meyer, T. (2008). Semantic preferential subsumption. Proceedings of the 11th international conference on principles of knowledge representation and reasoning (KR) (pp. 476–484). Cambridge: AAAI Press/MIT Press.

    Google Scholar 

  • Britz, K., Meyer, T., & Varzinczak, I. (2011). Preferential reasoning for modal logics. Electronic Notes in Theoretical Computer Science, 278, 55–69. Proceedings of the 7th Workshop on Methods for Modalities (M4M’2011).

    Article  Google Scholar 

  • Britz, K., Meyer, T., & Varzinczak, I. (2011). Semantic foundation for preferential description logics. In D. Wang & M. Reynolds (Eds.), Proceedings of the 24th Australasian Joint Conference on Artificial Intelligence, no. 7106 in LNAI (pp. 491–500). Berlin: Springer.

    Google Scholar 

  • Britz, K., Meyer, T., & Varzinczak, I. (2012). Normal modal preferential consequence. Proceedings of the 25th Australasian joint conference on artificial intelligence (pp. 505–516). Berlin: Springer.

    Google Scholar 

  • Britz, K., & Varzinczak, I. (2013). Defeasible modalities. In Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK) (pp. 49–60).

  • Britz, K., & Varzinczak, I. (2016a). Introducing role defeasibility in description logics. In L. Michael & A. Kakas (Eds.), Proceedings of the 15th European conference on logics in artificial intelligence (JELIA), no. 10021 in LNCS (pp. 174–189). Berlin: Springer.

  • Britz, K., & Varzinczak, I. (2016b). Preferential modalities revisited. In Proceedings of the 16th International Workshop on Nonmonotonic Reasoning (NMR).

  • Britz, K., & Varzinczak, I. (2017a). Context-based defeasible subsumption for \(d{{mathcal SROIQ}}\). In Proceedings of the 13th international symposium on logical formalizations of commonsense reasoning.

  • Britz, K., & Varzinczak, I. (2017b). Towards defeasible \(d{\cal{SROIQ}}\). In Proceedings of the 30th international workshop on description logics (Vol. 1879). CEUR Workshop Proceedings.

  • Britz, K., & Varzinczak, I. (2017c) From KLM-style conditionals to defeasible modalities, and back. Journal of Applied Non-Classical Logics. https://doi.org/10.1080/11663081.2017.1397325

  • Casini, G., Meyer, T., Moodley, K., Sattler, U., & Varzinczak, I. (2015). Introducing defeasibility into OWL ontologies. In M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, & S. Staab (Eds.), Proceedings of the 14th international semantic web conference (ISWC), no. 9367 in LNCS (pp. 409–426). Berlin: Springer.

    Google Scholar 

  • Casini, G., & Straccia, U. (2010). Rational closure for defeasible description logics. In T. Janhunen & I. Niemelä (Eds.), Proceedings of the 12th European conference on logics in artificial intelligence (JELIA), no. 6341 in LNCS (pp. 77–90). Berlin: Springer.

    Google Scholar 

  • Crocco, G., & Lamarre, P. (1992). On the connections between nonmonotonic inference systems and conditional logics. In R. Nebel, C. Rich, & W. Swartout (Eds.), Proceedings of the 3rd international conference on principles of knowledge representation and reasoning (KR) (pp. 565–571). Burlington: Morgan Kaufmann Publishers.

    Google Scholar 

  • Dubois, D., Lang, J., & Prade, H. (1994). Possibilistic logic. In D. Gabbay, C. Hogger, & J. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Vol. 3, pp. 439–513). Oxford: Oxford University Press.

    Google Scholar 

  • Friedman, N., & Halpern, J. (2001). Plausibility measures and default reasoning. Journal of the ACM, 48(4), 648–685.

    Article  Google Scholar 

  • Gärdenfors, P., & Makinson, D. (1994). Nonmonotonic inference based on expectations. Artificial Intelligence, 65(2), 197–245.

    Article  Google Scholar 

  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. (2007). Preferential description logics. Logic for programming, artificial intelligence, and reasoning (LPAR), no. 4790 in LNAI (pp. 257–272). Berlin: Springer.

    Chapter  Google Scholar 

  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. (2013). A non-monotonic description logic for reasoning about typicality. Artificial Intelligence, 195, 165–202.

    Article  Google Scholar 

  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. (2015). Semantic characterization of rational closure: From propositional logic to description logics. Artificial Intelligence, 226, 1–33.

    Article  Google Scholar 

  • Hansson, B. (1969). An analysis of some deontic logics. Noûs, 3, 373–398.

    Article  Google Scholar 

  • Hansson, S. (1999). A textbook of belief dynamics: Theory change and database updating. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Hawthorne, J. (2007). Nonmonotonic conditionals that behave like conditional probabilities above a threshold. Journal of Applied Logic, 5(4), 625–637.

    Article  Google Scholar 

  • Hodges, W. (1993). Model Theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Katsuno, H., & Mendelzon, A. (1991). Propositional knowledge base revision and minimal change. Artificial Intelligence, 3(52), 263–294.

    Article  Google Scholar 

  • Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167–207.

    Article  Google Scholar 

  • Lehmann, D. (1995). Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence, 15(1), 61–82.

    Article  Google Scholar 

  • Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55, 1–60.

    Article  Google Scholar 

  • Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.

    Google Scholar 

  • Lewis, D. (1974). Semantic analyses for dyadic deontic logic. Logical theory and semantic analysis (pp. 1–14). Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Liau, C. J. (1999). On the possibility theory-based semantics for logics of preference. International Journal of Approximate Reasoning, 20(2), 173–190.

    Article  Google Scholar 

  • Liau, C. J., & Lin, B. P. (1996). Possibilistic reasoning-a mini-survey and uniform semantics. Artificial Intelligence, 88(1–2), 163–193.

    Article  Google Scholar 

  • Lindström, P. (1966). First-order predicate logic with generalized quantifiers. Theoria, 32, 186–195.

    Google Scholar 

  • Makinson, D. (1993). Five faces of minimality. Studia Logica, 52, 339–379.

    Article  Google Scholar 

  • Makinson, D. (2005). Bridges from classical to nonmonotonic logic, texts in computing (Vol. 5). London: King’s College Publications.

    Google Scholar 

  • Shoham, Y. (1988). Reasoning about change: Time and causation from the standpoint of artificial intelligence. Cambridge: MIT Press.

    Google Scholar 

  • Stalnaker, R. (1968). A theory of conditionals. In N. Rescher (Ed.), Studies in logical theory (pp. 98–112). Oxford: Blackwell.

    Google Scholar 

  • Veloso, P., Veloso, S., Viana, J., de Freitas, R., Benevides, M., & Delgado, C. (2009). On vague notions and modalities: A modular approach. Logic Journal of the IGPL, 18(3), 381–402.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their constructive comments and suggestions. This work was partially funded by the National Research Foundation of South Africa (UIDs 81225 and 85482, IFR1202160021 and IFR2011032700018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Varzinczak.

Additional information

A preliminary version of the work reported in this paper was presented at the Workshop on Nonmonotonic Reasoning (Britz and Varzinczak 2016b).

Proof of Theorem 1

Proof of Theorem 1

In the following, we denote the dual of in the usual sense, i.e., .

Definition 14

(Subsentence) Let . The set of subsentences of \(\alpha \), denoted by \({\text { sub}(\alpha )}\), is defined inductively by:

  • If \(\alpha =\top \) or \(\alpha =\bot \), then \({\text { sub}(\alpha )}\mathrel {\mathop :}=\{\alpha \}\);

  • If \(\alpha =p\in \mathcal {P}\), then \({\text { sub}(\alpha )}\mathrel {\mathop :}=\{p\}\);

  • If \(\alpha =\beta \wedge \gamma \) or \(\alpha =\beta \vee \gamma \) or \(\alpha =\beta \rightarrow \gamma \), then \({\text { sub}(\alpha )}\mathrel {\mathop :}=\{\alpha \}\cup {\text { sub}(\beta )}\cup {\text { sub}(\gamma )}\);

  • If \(\alpha =\lnot \beta \) or \(\alpha =\Diamond _{i}\beta \) or \(\alpha =\Box _{i}\beta \) or , then \({\text { sub}(\alpha )}\mathrel {\mathop :}=\{\alpha \}\cup {\text { sub}(\beta )}\).

Definition 15

(Closure under subsentences) Let . We say \(\mathcal {C}\) is closed under its subsentences if and only if \(\bigcup \{{\text { sub}(\alpha )} \mid \alpha \in \mathcal {C}\}\subseteq \mathcal {C}\).

Definition 16

(\(\mathcal {C}\)-type) Let and let \(\mathscr {R}=\langle { W},{ R},{ V},\ll \rangle \) be an \({ R}\)-ordered model. For every \(w\in { W}\),

$$\begin{aligned} t_{\mathcal {C}}(w)\mathrel {\mathop :}=\{\alpha \in \mathcal {C}\mid \mathscr {R},w\Vdash \alpha \} \end{aligned}$$

is the \(\mathcal {C}\)-type of w in \(\mathscr {R}\).

Definition 17

(\(\mathcal {C}\)-equivalence) Let be finite and let \(\mathscr {R}=\langle { W},{ R},{ V},\ll \rangle \) be an \({ R}\)-ordered model. For every \(w,w'\in { W}\), \(w\simeq _{\mathcal {C}}w'\) if and only if \(t_{\mathcal {C}}(w)=t_{\mathcal {C}}(w')\). (It is easy to see that \(\simeq _{\mathcal {C}}\) is an equivalence relation on \({ W}\).) With \([w]_{\mathcal {C}}\mathrel {\mathop :}=\{w' \mid w\simeq _{\mathcal {C}}w'\}\), we denote the \(\mathcal {C}\)-equivalence class of \(w\in { W}\).

Definition 18

(\(\mathcal {C}\)-filtration) Let be finite and let \(\mathscr {R}=\langle { W},{ R},{ V},\ll \rangle \) be an \({ R}\)-ordered model. Moreover, let:

  • \({ W}'\mathrel {\mathop :}={ W}/\simeq _{\mathcal {C}}\) (i.e., \({ W}'=\{[w]_{\mathcal {C}} \mid w\in { W}\}\));

  • \({ R}'\mathrel {\mathop :}=\langle { R}'_{1},\ldots ,{ R}'_{n} \rangle \), where \({ R}'_{i}\mathrel {\mathop :}=\{([w]_{\mathcal {C}},[w']_{\mathcal {C}}) \mid (w,w')\in { R}_{i}\}\), \(i=1,\ldots ,n\);

  • \({ V}':{ W}'\longrightarrow \{0,1\}^{\mathcal {P}}\), with \({ V}'([w]_{\mathcal {C}})={ V}(w)\);

  • \(\ll '=\langle \ll '_{1},\ldots ,\ll '_{n} \rangle \), where \(\ll '_{i}\mathrel {\mathop :}=\{([w]_{\mathcal {C}}[v]_{\mathcal {C}},[w']_{\mathcal {C}}[v']_{\mathcal {C}}) \mid (wv,w'v')\in \ll _{i}\) and either \(w\notin [w']_{\mathcal {C}}\) or \(v\notin [v']_{\mathcal {C}}\}\), \(i=1,\ldots ,n\). (It is not hard to check that each \(\ll '_{i}\) is a strict well-founded partial order).

With \(\mathscr {R}'\mathrel {\mathop :}=\langle { W}',{ R}',{ V}',\ll ' \rangle \) we denote the \(\mathcal {C}\)-filtration of \(\mathscr {R}\).

In Definition 18, the purpose of the clause “either \(w\notin [w']_{\mathcal {C}}\) or \(v\notin [v']_{\mathcal {C}}\)” is to prevent two indistinguishable (w.r.t. \(\mathcal {C}\)) pairs of worlds from inducing a reflexive \(\ll '_{i}\)-edge, which would violate the stated condition that \(\ll '_{i}\) must be a strict partial order.

Lemma 5

(Minimality preservation) Let be finite and closed under subsentences, let \(\mathscr {R}=\langle { W},{ R},{ V},\ll \rangle \) be an \({ R}\)-ordered model, and let \(\mathscr {R}'=\langle { W}',{ R}',{ V}',\ll ' \rangle \) be the \(\mathcal {C}\)-filtration of \(\mathscr {R}\). Then, for \(i=1,\ldots ,n\), (i) if \((w,v)\in \min _{\ll _{i}}{ R}_{i}\), then \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\in \min _{\ll '_{i}}{ R}'_{i}\), and (ii) if \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\in \min _{\ll '_{i}}{ R}'_{i}\), then there are \(w'\in [w]_{\mathcal {C}}\) and \(v'\in [v]_{\mathcal {C}}\) such that \((w',v')\in \min _{\ll _{i}}{ R}_{i}\).

Proof

Showing (i): Assume \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\notin \min _{\ll '_{i}}{ R}'_{i}\). If \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\notin { R}'_{i}\), then \((w,v)\notin { R}_{i}\) and we are done. If there is \(([w']_{\mathcal {C}},[v']_{\mathcal {C}})\in { R}'_{i}\) such that \(([w']_{\mathcal {C}},[v']_{\mathcal {C}})\ll '_{i}([w]_{\mathcal {C}},[v]_{\mathcal {C}})\), then, by the construction of \(\ll '_{i}\), we have \((x,y)\ll _{i}(w,v)\) for some \(x\in [w]_{\mathcal {C}}\) and \(y\in [v]_{\mathcal {C}}\). Hence \((w,v)\notin \min _{\ll _{i}}{ R}_{i}\).

Showing (ii): Let \(X\mathrel {\mathop :}=\{(w',v') \mid w'\in [w]_{\mathcal {C}}\) and \(v'\in [v]_{\mathcal {C}}\}\). Assume \(X\cap \min _{\ll _{i}}{ R}_{i}=\emptyset \). Then for every \((w',v')\in X\) there must be \((x,y)\in { R}_{i}\) such that \((x,y)\ll _{i}(w',v')\). Moreover, \(x\notin [w]_{\mathcal {C}}\) or \(y\notin [v]_{\mathcal {C}}\), otherwise \((x,y)\in X\). Hence \(([x]_{\mathcal {C}},[y]_{\mathcal {C}})\ll '_{i}([w']_{\mathcal {C}},[v']_{\mathcal {C}})\), by the construction of \(\mathscr {R}'\). Since \([w']_{\mathcal {C}}=[w]_{\mathcal {C}}\) and \([v']_{\mathcal {C}}=[v]_{\mathcal {C}}\), it follows that \(([x]_{\mathcal {C}},[y]_{\mathcal {C}})\ll '_{i}([w]_{\mathcal {C}},[v]_{\mathcal {C}})\), and therefore \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\notin \min _{\ll '_{i}}{ R}'_{i}\). \(\square \)

Lemma 6

(Satisfaction preservation) Let be finite and closed under subsentences, let \(\mathscr {R}=\langle { W},{ R},{ V},\ll \rangle \) be an \({ R}\)-ordered model, and let \(\mathscr {R}'=\langle { W}',{ R}',{ V}',\ll ' \rangle \) be the \(\mathcal {C}\)-filtration of \(\mathscr {R}\). For every \(w\in { W}\) and every \(\alpha \in \mathcal {C}\), \(\mathscr {R},w\Vdash \alpha \) if and only if \(\mathscr {R}',[w]_{\mathcal {C}}\Vdash \alpha \).

Proof

The proof is by induction on the structure of the sentence \(\alpha \). Below we only show the case of via its dual . (The classical cases are as usual.)

Assume . Since \(\mathcal {C}\) is closed, we have \(\beta \in \mathcal {C}\), and thus the induction hypothesis applies to \(\beta \).

For the only-if part, let . Then there is \(w'\in { W}\) such that \((w,w')\in { R}_{i}\), \((w,w')\in \min _{\ll _{i}}{ R}_{i}^{w}\) and \(\mathscr {R},w'\Vdash \beta \). We have \(([w]_{\mathcal {C}},[w']_{\mathcal {C}})\in { R}'_{i}\), since \(w\in [w]_{\mathcal {C}}\) and \(w'\in [w']_{\mathcal {C}}\). By induction, we get \(\mathscr {R}',[w']_{\mathcal {C}}\Vdash \beta \). By Lemma 5, \(([w]_{\mathcal {C}},[w']_{\mathcal {C}})\in \min _{\ll '_{i}}{ R}_{i}^{[w]_{\mathcal {C}}}\). Hence .

For the if part, let . Then there is \([v]_{\mathcal {C}}\in { W}'\) such that \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\in { R}'_{i}\), \(([w]_{\mathcal {C}},[v]_{\mathcal {C}})\in \min _{\ll '_{i}}{{ R}'_{i}}^{[w]_{\mathcal {C}}}\) and \(\mathscr {R}',[v]_{\mathcal {C}}\Vdash \beta \). By induction, we get \(\mathscr {R},v\Vdash \beta \). Moreover, by Lemma 5, there are \(w'\in [w]_{\mathcal {C}}\) and \(v'\in [v]_{\mathcal {C}}\) such that \((w',v')\in \min _{\ll _{i}}{ R}_{i}^{w'}\), from which follows \((w',v')\in { R}_{i}\). Since \(v\simeq _{\mathcal {C}}v'\) and \(\beta \in \mathcal {C}\), \(\mathscr {R},v\Vdash \beta \) implies \(\mathscr {R},v'\Vdash \beta \). Hence we have . Since , we get . \(\square \)

Lemma 7

If is satisfiable, then it has a finite model.

Proof

Let \(\mathscr {R}\) be such that \(\mathscr {R}\Vdash \alpha \), and let \(\mathcal {C}={\text { sub}(\alpha )}\). From finiteness of \(\alpha \), it follows that \(\mathcal {C}\) is finite, too. Hence Definition 18 guarantees the existence of a \(\mathcal {C}\)-filtration \(\mathscr {R}'\) of \(\mathscr {R}\) having a finite set of worlds. It remains to show that \(\mathscr {R}'\) is a model of \(\alpha \). Let \(w\in { W}\) be such that \(\mathscr {R},w\Vdash \alpha \). Since \(\alpha \in \mathcal {C}\), by Lemma 6 it follows that \(\mathscr {R}',[w]_{\mathcal {C}}\Vdash \alpha \). \(\square \)

The proof of Theorem 1 follows immediately from Lemma 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britz, K., Varzinczak, I. Preferential Accessibility and Preferred Worlds. J of Log Lang and Inf 27, 133–155 (2018). https://doi.org/10.1007/s10849-017-9264-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-017-9264-0

Keywords

Navigation