Skip to main content
Log in

Fluorescence-based investigations of the host–guest inclusion of anilinonaphthalene sulfonic acids (1,8- and 2,6-ANS) by dimethoxypillar[5]arene in nonaqueous solvents

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Pillar[n]arenes are a relatively new class of macrocyclic host molecules which have not been extensively studied for their ability to form inclusion complexes. The properties and host–guest inclusion complexes of dimethoxypillar[5]arene (DMPill[5]) hosts with the polarity-sensitive fluorescent probes 8-anilinonaphthalene-1-sulfonic acid (1,8-ANS) and 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS) as guests were investigated in nonaqueous solvents via fluorescence spectroscopy. The binding properties of DMPill[5] were found to depend significantly on the shape of the guest molecule, as well as on the properties of the solvent. Formation of host–guest inclusion complexes of DMPill[5] with these two fluorescent ANS guests occurred in the polar aprotic solvents acetonitrile, acetone, and tetrahydrofuran. Fluorescence titration experiments were performed to determine the nature and strength of the complexation. In the case of 1,8-ANS, 1:1 host–guest complexation was observed in all three solvents, with average binding constant K values of 408, 1000 and 5500 M−1 in acetone, acetonitrile, and tetrahydrofuran, respectively. This large dependence of the binding constant on solvent provides insight into the nature of the binding in these complexes. In the case of 2,6-ANS, 2:1 host–guest complexation was observed; this difference with 1,8-ANS was explained in terms of the shape and size of these two isomeric guests. These results show that DMPill[5] is an excellent host for these neutral aromatic guests, and shows strong binding abilities even in these nonaqueous solvents. The strength (or lack) of binding in different solvents was found to be dependent on a range of factors beyond solvent polarity, including guest and solvent shape and size, and most importantly, specific solvent–solute interactions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ogoshi, T., Ed. Pillararenes, Royal Society of Chemistry Monographs in Supramolecular Chemistry, London, UK, (2015)

    Google Scholar 

  2. Ogoshi, T., Yamagishi, T.-A., Nakamoto, Y.: Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chem. Rev. 116, 7937–8002 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Li., C.: Pillararene-based supramolecular polymers: From molecular recognition to polymeric aggregates. Chem. Commun. 50, 12420–12433 (2014 )

    Article  CAS  Google Scholar 

  5. Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, H., Zhao, Y.: Pillararene-based assemblies: Design principle, preparation and applications. Chem. Eur. J. 19, 16862–16879 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Yao, Y., Xue, M., Chen, J., Zhang, M., Huang, F.: An amphiphilic pillar[5]arene: Synthesis, controllable self-assembly in water, and application in calcein release and TNT absorption. J. Am. Chem. Soc. 134, 15712–15715 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Z., Luo, Y., Chen, J., Dong, S., Yu, Y., Ma, Z., Huang, F.: Formation of linear supramolecular polymers that is driven by C–H…π interactions in solution and in the solid state. Angew. Chem. Int. Ed. 50, 1397–1401 (2011)

    Article  CAS  Google Scholar 

  9. Jie, K., Zhou, Y., Li, E., Zhao, R., Huang, F.: Separation of aromatics/cyclic aliphatic hydrocarbons by nonporous adaptive pillarene crystals. Angew. Chem. Int. Ed. 57, 12845–12849 (2018)

    Article  CAS  Google Scholar 

  10. Xue, M., Yang, Y., Chi, X., Zhang, Z., Huang, F.: Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Macias, A.T., MacKerell Jr., A.D.: CH/π interactions involving aromatic amino acids: Refinement of the CHARMM tryptophan force field. J. Comput. Chem. 26 , 1452–1463 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S., Suezawa, H.: CH/π hydrogen bonds in organic and organometallic chemistry. Cryst. Eng. Comm. 11, 1757–1788 (2009)

    Article  CAS  Google Scholar 

  13. Tao, H., Cao, D., Liu, L., Kou, Y., Wang, L., Meier, H.: Synthesis and host-guest properties of pillar[6]arenes. Sci. Chin. 55, 223–228 (2012)

    Article  CAS  Google Scholar 

  14. Ma, Y., Chi, X., Yan, X., Liu, J., Yao, Y., Chen, W., Huang, F., Hou, J.-L.: per-Hydroxylated pillar[6]arene: Synthesis, X-ray crystal structure, and host-guest complexation. Org. Lett. 14, 1532–1535 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Yu, G., Xue, M., Zhang, Z., Li, J., Han, C., Huang, F.: A water-soluble pillar[6]arene: Synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J. Am. Chem. Soc. 134 13248–13251

    Article  CAS  PubMed  Google Scholar 

  16. Santra, S., Kopchuk, D.S., Kovalev, I.S., Zyryanov, G.V., Majee, A., Charushin, V.N., Chupakhin, O.N.: Solvent-free synthesis of pillar[6]arenes. Green Chem. 18, 423–426 (2016)

    Article  CAS  Google Scholar 

  17. Yu, G., Zhou, J., Shen, J., Tang, G., Huang, F.: Cationic pillar[6]arene/ATP host-guest recognition: Selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 7, 4073–4078 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y., Zhou, F., Yang, F., Ma, D.: Carboxylated pillar[n]arene (n = 5–7) host molecules: High affinity and selective binding in water. Org. Biomol. Chem. 17, 5106–5111 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. Schönbeck, C., Li, H., Han, B.-H., Laursen, B.W.: Solvent effects and driving forces in pillarene inclusion complexes. J. Phys. Chem. B 119, 6711–6720 (2015)

    Article  PubMed  Google Scholar 

  20. Fernández-Rosas. J., Gómez-González, B., Pessȇgo, M., Rodríguez-Dafonte, P., Parajó, M., Garcia-Rio, L.: Comparison of pillar[5]arene and calix[4]arene anion receptor ability in aqueous media. Supramol. Chem. 28, 464–474 (2016)

    Article  Google Scholar 

  21. D'Anna, F., Rizzo, C., Vitale, P., Marullo, S., Ferrante, F.: Supramolecular complexes formed by dimethoxypillar[5]arenes and imidazolium salts: a joint experimental and computational investigation. New J. Chem. 41, 12490–12505 (2017)

    Article  CAS  Google Scholar 

  22. Zhang, H., Nguyen, K. T., Ma, X., Yan, H., Guo, J., Zhu, L., Zhao, Y.: Host–guest complexation driven dynamic supramolecular self-assembly. Org. Biomol. Chem. 11, 2070–2074 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Tan, L., Zhang, Y., Li, B., Wang, K., Zhang, S. X., Tao, Y., Yang, Y.: Selective recognition of “solvent” molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces. New J. Chem. 38, 845–851 (2014)

    Article  CAS  Google Scholar 

  24. Wang, L., Xia, D., Chao, J., Zhang, J., Wei, X., Wang, P.: A Dimethoxypillar[5]arene/azastilbene host–guest recognition motif and its applications in the fabrication of polypseudorotaxanes. Org. Biomol. Chem. 17, 6038–6042 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Robinson, G.W., Robbins, R.J., Fleming, G.R., Morris, J.M., Knight, A.E.W., Morrison, R.J.S.: Picosecond studies of the fluorescence probe molecule 8-anilino-1-naphthalenesulfonic acid. J. Am. Chem. Soc. 100, 7145–7150 (1978)

    Article  Google Scholar 

  26. Upadhyay, A., Bhatt, T., Tripathi, H.B., Pant, D.D.: Photophysics of 8-anilino-1-naphthalenesulfonate. J. Photochem. Photobiol. A. Chem. 89, 201–207 (1995)

    Article  CAS  Google Scholar 

  27. Wagner, B.D., Arnold, A.E., Gallant, S.T., Grinton, C.R., Locke, J.K., Mills, N.D., Snow, C.A., Uhlig,T.B., Vessey, C.N.: The polarity sensitivity factor (PSF) of some fluorescent probe molecules used for studying supramolecular systems and other heterogeneous environments. Can. J. Chem. 96, 629–635 (2018)

    Article  CAS  Google Scholar 

  28. Wagner, B.D.: Fluorescence studies of supramolecular host-guest inclusion complexes. In: H.S., Nalwa (ed.), Handbook of photochemistry and photobiology, pp. 1-58. American Scientific Publishers, Los Angeles (2003)

    Google Scholar 

  29. Wagner, B.D., MacDonald, P.J.: The fluorescence enhancement of 1-anilinonaphthalene-8-sulfonate (ANS) by modified beta-cyclodextrins. J. Photochem. Photobiol. A. 114, 151–157 (1998)

    Article  CAS  Google Scholar 

  30. Wagner, B.D., Fitzpatrick, S.J.: A comparison of the host-guest inclusion complexes of 1,8-ANS and 2,6-ANS in parent and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 38, 467–478 (2000)

    Article  CAS  Google Scholar 

  31. Favrelle, A., Gouhier, G., Guillen, F., Martin, C., Mofaddel, N., Petit, S., Mundy, K.M., Pitre, S.P., Wagner, B.D.: Structure-binding effects: Comparative binding of 2-anilino-6-naphthalenesulfonate by a series of alkyl- and hydroxyalkyl-substituted β-cyclodextrins. J. Phys. Chem. B 119, 12921–12930 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Wagner, B.D., Fitzpatrick, S.J., Gill, M.A., MacRae, A.I., Stojanovic, N.: A fluorescent host-guest complex of cucurbituril in solution: A molecular Jack O’Lantern. Can. J. Chem. 79, 1101–1104 (2001)

    Article  CAS  Google Scholar 

  33. Wagner, B.D., Stojanovic, N., Day, A.I., Blanch, R.J.: Host properties of cucurbit[7]uril: Fluorescence enhancement of anilinonaphthalene sulfonates. J. Phys. Chem. B 107, 10741–10746 (2003)

    Article  CAS  Google Scholar 

  34. Stojanovic, N., Murphy, L. D, Wagner, B. D.: Fluorescence-based comparative binding studies of the supramolecular host properties of PAMAM dendrimers using anilinonaphthalene sulfonates: Unusual host-dependent fluorescence titration behaviour. Sensors 10, 4053–4070 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Ogoshi, T.: Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials. J. Inclusion Phenom. Macrocycl. Chem. 72, 247–262 (2012)

    Article  CAS  Google Scholar 

  36. Muňoz de la Peňa, A., Salinas, F., Gómez, M.J., Acedo, M.I., Sánchez Peňa, M.: Absorptiometric and spectrofluorimetric study of the inclusion complexes of 2-naphthyloxyacetic acid and 1-naphthylacetic acid with β-cyclodextrin in aqueous solution. J. Inclus. Phenom. Mol. Recog. Chem. 15, 131–143 (1993)

    Article  Google Scholar 

  37. Nigam, S., Durocher, G.: Spectral and photophysical studies of inclusion complexes of some neutral 3H-indoles and their cations and anions with β-cyclodextrin. J. Phys. Chem. 100, 7135–7142 (1996)

    Article  CAS  Google Scholar 

  38. Ogoshi, T., Yamagishi, T.: Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host–guest interactions. Chem. Commun. 50, 4776–4787 (2014)

    Article  CAS  Google Scholar 

  39. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Natural Sciences and Engineering Research Council of Canada and by the University of Prince Edward Island.

Author information

Authors and Affiliations

Authors

Contributions

T.A.M.: Experimental work, writing first draft, editing; B.D.W.: Project conception, supervision, editing, final draft, submission.

Corresponding author

Correspondence to Brian D. Wagner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misener, T.A., Wagner, B.D. Fluorescence-based investigations of the host–guest inclusion of anilinonaphthalene sulfonic acids (1,8- and 2,6-ANS) by dimethoxypillar[5]arene in nonaqueous solvents. J Incl Phenom Macrocycl Chem 100, 131–141 (2021). https://doi.org/10.1007/s10847-021-01063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01063-9

Keywords

Navigation