Skip to main content
Log in

Binding interactions of bisbenzimidazolyl derivatives with cyclohexanocucurbit[6]uril

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The binding properties of cyclohexanocucurbit[6]uril (Cy6Q[6]) host toward three 1,w-bisbenzimidazolyl derivatives (guests 13, with alkyl chain of different lengths as linker) have been analyzed by 1H NMR spectroscopy and isothermal titration calorimetry (ITC) in aqueous solution and X-ray crystallography in solid state. The 1H NMR spectroscopy reveal that all guests can form 1:1 and 1:2 inclusion complexes with Cy6Q[6] macrocyles residing over benzoimidazole groups. The actual binding ratios or modes depend on the amounts of the host. Interestingly, the encapsulation and release of the guests can be controlled through the pH values of the solution. ITC data show that the binding process of host Cy6Q[6] with gusts 13 is driven by enthalpy, which benefits from hydrophobic effects and host–guest interactions. X-ray diffraction analysis provide unambiguous evidence that the benzoimidazole group of the guests 1 and 2 can be encapsulated into the Cy6Q[6] cavity, forming 1:1 host–guest inclusion complexes. The formation of these 1:1 binary inclusion complexes is attributed to the cooperativity of ion–dipole interaction, van der Waals interaction, C–H···π interaction, and hydrogen-bonding interaction.

Graphic abstract

Binding interactions of 1,ω-bisbenzimidazolyl derivatives (guests) with cyclohexanocucurbit[6]uril (Cy6Q[6]) both in aqueous solution and solid state have been investigated by various tools. The results reveal that all guests can form 1:1 or 1:2 inclusion complexes with Cy6Q[6] residing over benzoimidazole groups of the guests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atwood, J.L., Steed, J.W.: Encyclopaedia of supramolecular chemistry. Taylor & Francis, New York (2004)

    Google Scholar 

  2. Kolesnichenko, I.V., Anslyn, E.V.: Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017)

    CAS  PubMed  Google Scholar 

  3. Liu, Z., Nalluri, S.K.M., Stoddart, J.F.: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017)

    CAS  PubMed  Google Scholar 

  4. Zhao, D., Moore, J.S.: Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun. 2003(7), 807–818 (2003)

    Google Scholar 

  5. Zhang, W., Moore, J.S.: Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew. Chem. Int. Ed. 45, 4416–4439 (2006)

    CAS  Google Scholar 

  6. Jin, Y., Zhang, A., Huang, Y., Zhang, W.: Recent advances in dynamic covalent chemistry. Chem. Commun. 46, 8258–8260 (2010)

    CAS  Google Scholar 

  7. Oshovsky, G.V., Reinhoudt, D.N., Verboom, W.: Supramolecular chemistry in water. Angew. Chem. Int. Ed. 46, 2366–2393 (2007)

    CAS  Google Scholar 

  8. Harada, A., Takashima, Y., Nakahata, M.: Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014)

    CAS  PubMed  Google Scholar 

  9. Appel, E.A., Barrio, J., Loh, X.J., Scherman, O.A.: Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012)

    CAS  PubMed  Google Scholar 

  10. Yu, G.C., Jie, K.C., Huang, F.H.: Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem. Rev. 115, 7240–7303 (2015)

    CAS  PubMed  Google Scholar 

  11. Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    CAS  Google Scholar 

  13. Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)

    CAS  PubMed  Google Scholar 

  14. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)

    CAS  Google Scholar 

  15. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)

    CAS  PubMed  Google Scholar 

  16. Ni, X.L., Xiao, X., Cong, H., Liang, L.L., Chen, K., Chen, X.J., Ji, N.N., Zhu, Q.J., Xue, S.F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013)

    CAS  PubMed  Google Scholar 

  17. Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015)

    CAS  PubMed  Google Scholar 

  18. Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.K., Kim, S.Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003)

    CAS  PubMed  Google Scholar 

  19. Wu, F., Wu, L.H., Xiao, X., Zhang, Y.Q., Xue, S.F., Tao, Z., Day, A.I.: Locating the cyclopentano cousins of the cucurbit[n]uril family. J. Org. Chem. 77, 606–611 (2012)

    CAS  PubMed  Google Scholar 

  20. Zhao, Y.J., Xue, S.F., Zhu, Q.J., Tao, Z., Zhang, J.X., Wei, Z.B., Long, L.S., Hu, M.L., Xiao, H.P., Day, A.I.: Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2′-bipyridine. Chin. Sci. Bull. 49, 1111–1116 (2004)

    CAS  Google Scholar 

  21. Zhao, J., Kim, H.J., Oh, J., Kim, S.Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. 40, 4233–4235 (2001)

    CAS  Google Scholar 

  22. Vinciguerra, B., Cao, L.P., Cannon, J.R., Zavalij, P.Y., Fenselau, C., Isaacs, L.: Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. J. Am. Chem. Soc. 134, 13133–13140 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Singla, P., Luxami, V., Paul, K.: Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv. 4, 12422–12440 (2014)

    CAS  Google Scholar 

  24. Maiti, B., Chanda, K.: Diversity oriented synthesis of benzimidazole-based biheterocyclic molecules by combinatorial approach: a critical review. RSC Adv. 6, 50384–50413 (2016)

    CAS  Google Scholar 

  25. Kim, M.O., Blachly, P.G., Kaus, J.W., McCammon, J.A.: Protocols utilizing constant pH molecular dynamics to compute pH-dependent binding free energies. J. Phys. Chem. B 119, 861–872 (2015)

    CAS  PubMed  Google Scholar 

  26. Barooah, N., Mohanty, J., Bhasikuttan, A.C.: pH-Mediated stoichiometric switching of cucurbit[8]uril-hoechst-33258 complexes. J. Phys. Chem. B 117, 13595–13603 (2013)

    CAS  PubMed  Google Scholar 

  27. Barooah, N., Sundararajan, M., Mohanty, J., Bhasikuttan, A.C.: Synergistic effect of intramolecular charge transfer toward supramolecular pKa shift in cucurbit[7]uril encapsulated coumarin dyes. J. Phys. Chem. B 118, 7136–7146 (2014)

    CAS  PubMed  Google Scholar 

  28. Pischel, U., Uzunova, V.D., Remon, P., Nau, W.M.: Supramolecular logic with macrocyclic input and competitive reset. Chem. Commun. 46, 2635–2637 (2010)

    CAS  Google Scholar 

  29. Barooah, N., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Supramolecular assembly of hoechst-33258 with cucurbit[7]uril macrocycle. Phys. Chem. Chem. Phys. 13, 13117–13126 (2011)

    CAS  PubMed  Google Scholar 

  30. Ge, J.Y., Xue, S.F., Zhu, Q.J., Tao, Z., Zhang, J.X.: Interaction of cucurbit[n = 6 ~ 8]urils and benzimidazole derivatives. J. Incl. Phenom. Macro. Chem. 58, 63–69 (2007)

    CAS  Google Scholar 

  31. Mukhopadhyay, C., Ghosh, S., Schmiedekamp, A.M.: Unraveling the molecular recognition of “three methylene spacer” bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study. Org. Biomol. Chem. 10, 1434–1439 (2012)

    CAS  PubMed  Google Scholar 

  32. Zhu, K., Vukotic, V., Noujeim, N., Loeb, S.J.: Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem. Sci. 3, 3265–3271 (2012)

    CAS  Google Scholar 

  33. Li, L., Clarkson, G.J.: New bis(benzimidazole) cations for threading through dibenzo-24-crown-8. Org. Lett. 9, 497–500 (2007)

    CAS  PubMed  Google Scholar 

  34. Ghosh, S., Schmiedekamp, A.M., Mukhopadhyay, C.: Bis(benzimidazolium)methane salts: a potential guest for dibenzo-24-crown-8 towards [2]pseudorotaxanes. Tetrahedron 68, 9826–9835 (2012)

    CAS  Google Scholar 

  35. Ni, X.L., Yi, J.M., Song, S., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Tao, Z.: Supramolecular interactions of bisbenzimidazolyl derivatives with cucurbit[7]uril, potential axle molecules bearing a novel fluorescent signal response. Tetrahedron 69, 6219–6222 (2013)

    CAS  Google Scholar 

  36. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009)

    CAS  Google Scholar 

  37. Palatinus, L., Chapuis, G.: SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007)

    CAS  Google Scholar 

  38. Palatinus, L., Prathapa, S.J., Smaalen, S.: EDMA: a computer program for topological analysis of discrete electron densities. J. Appl. Crystallogr. 45, 575–580 (2012)

    CAS  Google Scholar 

  39. Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. Sect. A 64, 112–122 (2008)

    CAS  Google Scholar 

  40. Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 71, 3–8 (2015)

    Google Scholar 

  41. Spek, A.L.: Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 65, 148–155 (2009)

    CAS  Google Scholar 

  42. Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., Simone, A.D.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012)

    CAS  PubMed  Google Scholar 

  43. Biedermann, F., Schneider, H.J.: Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016)

    CAS  PubMed  Google Scholar 

  44. Rebek Jr., J.: Molecular behavior in small spaces. Acc. Chem. Res. 42, 1660–1668 (2009)

    CAS  PubMed  Google Scholar 

  45. Ajami, D., Rebek Jr., J.: More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013)

    CAS  PubMed  Google Scholar 

  46. Lin, R.L., Li, J.Q., Liu, J.X., Kaifer, A.E.: The binding interactions between cyclohexanocucurbit[6]uril and alkyl viologens give rise to a range of diverse structures in the solid and the solution phases. J. Org. Chem. 80, 10505–10511 (2015)

    CAS  PubMed  Google Scholar 

  47. Fang, G.S., Sun, W.Q., Zhao, W.X., Lin, R.L., Tao, Z., Liu, J.X.: Host–guest complexation of di-cyclohexanocucurbit[6]uril and hexa-cyclohexano -cucurbit[6]uril with alkyldiammonium ions: a comparative study. Org. Biomol. Chem. 14, 674–679 (2016)

    CAS  PubMed  Google Scholar 

  48. Li, Q., Qiu, S.C., Chen, K., Zhang, Y., Wang, R., Huang, Y., Tao, Z., Zhu, Q.-J., Liu, J.X.: Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril. Chem. Commun. 52, 2589–2592 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21371004), Natural Science Foundation of Anhui Province of China (1808085MB43) and the Key scientific research projects in Colleges and Universities of Henan Province (Grant No. 16A180026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Xin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, LM., Zhang, K., Lin, RL. et al. Binding interactions of bisbenzimidazolyl derivatives with cyclohexanocucurbit[6]uril. J Incl Phenom Macrocycl Chem 96, 125–135 (2020). https://doi.org/10.1007/s10847-019-00957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00957-z

Keywords

Navigation