Skip to main content
Log in

Allosteric signal-amplification sensing with polymer-based supramolecular hosts

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The lock-and-key principle is a fundamental substance to create chemosensors that sense target analytes. Our results based on the lock-and-key concept, i.e., inherently chiral molecular clips and resorcin[4]arenes, were introduced and their inherent problems were also explained. Hence, a novel sensing methodology, “supramolecular allosteric signal-amplification sensing” (SASS), has been proposed to develop functional polythiophenes and polysaccharides for amino acids, peptides, and oligosaccharides that are difficult to sense. The polythiophene sensors showed amplified responses through a positive allosterism, and the polysaccharide sensors capture oligosaccharides in aqueous media and then were expanded to an extremely sensitive in situ oligosaccharide sensor that is dynamically controllable. The present SASS strategy using polymer chemosensors that behave very differently from common ones is essentially based on an allosterically molecular information propagation, upon interaction of an analyte to a chemosensor’s binding pocket, to an amplifying polymer reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from [81]

Fig. 3

Reprinted with permission from [83]

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reprinted with permission from [116]. (Color figure online)

Fig. 8

Reproduced by permission of The Royal Society of Chemistry

Fig. 9
Fig. 10

Reprinted with permission from [120]. (Color figure online)

Fig. 11

Reprinted with permission from Reproduced by permission of The Royal Society of Chemistry. (Color figure online)

Fig. 12

Reprinted with permission from [148]. (Color figure online)

Fig. 13

Reprinted with permission from [149]

Similar content being viewed by others

References

  1. Feringa, B.L.: The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017)

    Article  CAS  Google Scholar 

  2. Sauvage, J.-P.: From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017)

    Article  CAS  Google Scholar 

  3. Stoddart, J.F.: Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017)

    Article  CAS  Google Scholar 

  4. Lehn, J.-M.: Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988)

    Article  Google Scholar 

  5. Cram, D.J.: The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988)

    Article  Google Scholar 

  6. Pedersen, C.J.: The discovery of crown ethers (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988)

    Article  Google Scholar 

  7. Pringsheim, H.: The Chemistry of the Monosaccharides and of the Polysaccharides. McGraw-Hill, New York (1932)

    Google Scholar 

  8. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Article  CAS  Google Scholar 

  9. Fischer, E.: Einfluss der Configuration auf die Wirkung der Enzyme Influence of configuration on the action of enzymes. Ber. Dtsch. Chem. Ges. 27, 2985–2993 (1894)

  10. Wintner, E.A., Conn, M.M., Rebek, J. Jr.: Studies in molecular replication. Acc. Chem. Res. 27, 198–203 (1994)

    Article  CAS  Google Scholar 

  11. Fabbrizzi, L., Poggi, A.: Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 24, 197–202 (1995)

    Article  CAS  Google Scholar 

  12. Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Hartley, J.H., James, T.D., Ward, C.J.: Synthetic receptors. J. Chem. Soc. Perkin Trans. 1, 3155–3184 (2000)

    Article  Google Scholar 

  14. Bell, T.W., Hext, N.M.: Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev. 33, 589–598 (2004)

    CAS  PubMed  Google Scholar 

  15. Ikeda, M., Ochi, R., Hamachi, I.: Supramolecular hydrogel-based protein and chemosensor array. Lab Chip. 10, 3325–3334 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Pinalli, R., Dalcanale, E.: Supramolecular sensing with phosphonate cavitands. Acc. Chem. Res. 46, 399–411 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Ghale, G., Nau, W.M.: Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc. Chem. Res. 47, 2150–2159 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Amabilino, D.B.: Supramolecular sensing: enzyme activity with a twist. Nat. Chem. 7, 275–277 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Anslyn, E.V.: Supramolecular analytical chemistry. J. Org. Chem. 72, 687–699 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. You, L., Zha, D., Anslyn, E.V.: Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115, 7840–7892 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. A review summarizing analytical and supramolecular chemistry will be submitted by the author

  22. Wang, B., Anslyn, E.V. (eds.): Chemosensors: Principles, Strategies, and Applications. Wiley, Hoboken (2011)

    Google Scholar 

  23. Nolan, E.M., Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108, 3443–3480 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Xu, Z., Yoon, J., Spring, D.R.: Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 39, 1996–2006 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. Jung, J.H., Lee, J.H., Shinkai, S.: Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev. 40, 4464–4474 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Yeung, M.C.-L., Yam, V.W.-W.: Luminescent cation sensors: from host–guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem. Soc. Rev. 44, 4192–4202 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. Gale, P.A. (ed.): Anion coordination chemistry II. Coord. Chem. Rev. 250, 2917–3244 (2006)

  28. McDonald, K.P., Hua, Y., Lee, S., Flood, A.H.: Shape persistence delivers lock-and-key chloride binding in triazolophanes. Chem. Commun. 48, 5065–5075 (2012)

    Article  CAS  Google Scholar 

  29. Butler, S.J., Parker, D.: Anion binding in water at lanthanide centres: from structure and selectivity to signalling and sensing. Chem. Soc. Rev. 42, 1652–1666 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Busschaert, N., Caltagirone, C., Rossom, W.V., Gale, P.A.: Applications of supramolecular anion recognition. Chem. Rev. 115, 8038–8155 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. Vargas-Zúñiga, G.I., Sessler, J.L.: Pyrrole N–H anion complexes. Coord. Chem. Rev. 345, 281–296 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubik, S.: Anion recognition in aqueous media by cyclopeptides and other synthetic receptors. Acc. Chem. Res. 50, 2870–2878 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Elosua, C., Matias, I.R., Bariain, C., Arregui, F.J.: Volatile organic compound optical fiber sensors: a review. Sensors 6, 1440–1465 (2006)

    Article  CAS  PubMed Central  Google Scholar 

  34. Johnson, K.S., Needoba, J.A., Riser, S.C., Showers, W.J.: Chemical sensor networks for the aquatic environment. Chem. Rev. 107, 623–640 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. Pejcic, B., Eadington, P., Ross, A.: Environmental monitoring of hydrocarbons: a chemical sensor perspective. Environ. Sci. Technol. 41, 6333–6342 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Rambo, B.M., Sessler, J.L.: Oligopyrrole macrocycles: receptors and chemosensors for potentially hazardous materials. Chem. Eur. J. 17, 4946–4959 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L., Wu, D., Yoon, J.: Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 3, 27–43 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. Jalal, A.H., Alam, F., Roychoudhury, S., Umasankar, Y., Pala, N., Bhansali, S.: Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Yinon, J.: Detection of explosives by electronic noses. Anal. Chem. 75, 98A–105A (2003)

    Article  Google Scholar 

  40. Toal, S.J., Trogler, W.C.: Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16, 2871–2883 (2006)

    Article  CAS  Google Scholar 

  41. Swager, T.M.: Iptycenes in the design of high performance polymers. Acc. Chem. Res. 41, 1181–1189 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. Salinas, Y., Martínez-Máñez, R., Marcos, M.D., Sancenón, F., Costero, A.M., Parra, M., Gil, S.: Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 41, 1261–1296 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. Peczuh, M.W., Hamilton, A.D.: Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Kubota, R., Hamachi, I.: Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem. Soc. Rev. 44, 4454–4471 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Vilaivan, T.: Pyrrolidinyl PNA with α/β-dipeptide backbone: from development to applications. Acc. Chem. Res. 48, 1645–1656 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Shivananju, B.N., Yu, W., Liu, Y., Zhang, Y., Lin, B., Li, S., Bao, Q.: The roadmap of graphene-based optical biochemical sensors. Adv. Funct. Mater. 27, 1603918 (2017)

    Article  CAS  Google Scholar 

  47. Singh, K., Rotaru, A.M., Beharry, A.A.: Fluorescent chemosensors as future tools for cancer biology. ACS Chem. Biol. 13, 1785–1798 (2018)

    Article  CAS  PubMed  Google Scholar 

  48. Zwang, T.J., Tse, E.C.M., Barton, J.K.: ACS Chem. Biol. 13, 1799–1809 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cram, D.J., Cram, J.M.: Design of complexes between synthetic hosts and organic guests. Acc. Chem. Res. 11, 8–14 (1978)

    Article  CAS  Google Scholar 

  50. Green, M.M., Cheon, K.-S., Yang, S.-Y., Park, J.-W., Swansburg, S., Liu, W.: Chiral studies across the spectrum of polymer science. Acc. Chem. Res. 34, 672–680 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. Palmans, A.R.A., Meijer, E.W.: Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007)

    Article  CAS  Google Scholar 

  52. Hembury, G.A., Borovkov, V.V., Inoue, Y.: Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. Wolf, C., Bentley, K.W.: Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output. Chem. Soc. Rev. 42, 5408–5424 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. Yashima, E., Ousaka, N., Taura, D., Shimomura, K., Ikai, T., Maeda, K.: Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. Pu, L.: Simultaneous determination of concentration and enantiomeric composition in fluorescent sensing. Acc. Chem. Res. 50, 1032–1040 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. de Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  PubMed  Google Scholar 

  57. Gunnlaugsson, T., Ali, H.D.P., Glynn, M., Kruger, P.E., Hussey, G.M., Pfeffer, F.M., dos Santos, C.M.G., Tierney, J.: Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application. J. Fluoresc. 15, 287–299 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. Daly, B., Ling, J., de Silva, A.P.: Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chem. Soc. Rev. 44, 4203–4211 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. Merkx, M.: Rational design of FRET-based sensor proteins. Rev. Fluoresc. 5, 69–87 (2008)

    CAS  Google Scholar 

  60. Wu, J., Liu, W., Ge, J., Zhang, H., Wang, P.: New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40, 3483–3495 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. He, L., Dong, B., Liu, Y., Lin, W.: Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem. Soc. Rev. 45, 6449–6461 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. Liu, J., Lam, J.W.Y., Tang, B.Z.: Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. Hong, Y., Lam, J.W.Y., Tang, B.Z.: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. Borovkov, V.V., Inoue, Y.: Supramolecular chirogenesis in host–guest systems containing porphyrinoids. Top. Curr. Chem. 265, 89–146 (2006)

    Article  CAS  Google Scholar 

  65. Fukuhara, G., Nakamura, T., Yang, C., Mori, T., Inoue, Y.: Diasterodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to cellulose scaffold. J. Org. Chem. 75, 4307–4310 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. Fukuhara, G., Nakamura, T., Yang, C., Mori, T., Inoue, Y.: Dual chiral, dual supramolecular diasterodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to amylose scaffold. Org. Lett. 12, 3510–3513 (2010)

    Article  CAS  PubMed  Google Scholar 

  67. Fukuhara, G., Imai, M., Yang, C., Mori, T., Inoue, Y.: Enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene included and sensitized by naphthoyl-curdlan. Org. Lett. 13, 1856–1859 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. Fukuhara, G., Okazaki, T., Lessi, M., Nishijima, M., Yang, C., Mori, T., Mele, A., Bellina, F., Chiappe, C., Inoue, Y.: Chiral ionic liquid-mediated photochirogenesis. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid. Org. Biomol. Chem. 9, 7105–7112 (2011)

    Article  CAS  PubMed  Google Scholar 

  69. Fukuhara, G., Nakamura, T., Kawanami, Y., Yang, C., Mori, T., Hiramatsu, H., Dan-oh, Y., Tsujimoto, K., Inoue, Y.: Strictly diastereocontrolled photocyclodimerization of 2-anthracenecarboxylates tethered to cyclic tetrasaccharides. Chem. Commun. 48, 9156–9158 (2012)

    Article  CAS  Google Scholar 

  70. Fukuhara, G., Nakamura, T., Kawanami, Y., Yang, C., Mori, T., Hiramatsu, H., Dan-oh, Y., Nishimoto, T., Tsujimoto, K., Inoue, Y.: Diasterodifferentiating photocyclodimerization of 2-anthracenecarboxylates tethered to a cyclic tetrasaccharide scaffold: critical control of photoreactivity and stereoselectivity. J. Org. Chem. 78, 10996–11006 (2013)

    Article  CAS  PubMed  Google Scholar 

  71. Fukuhara, G., Iida, K., Kawanami, Y., Tanaka, H., Mori, T., Inoue, Y.: Excited-state dynamics achieved ultimate stereocontrol of photocyclodimerization of anthracenecarboxylates on a glucose scaffold. J. Am. Chem. Soc. 137, 15007–15014 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. Fukuhara, G., Iida, K., Mori, T., Inoue, Y.: Critical control by scaffold flexibility achieved in diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate. J. Photochem. Photobiol. A 331, 76–83 (2016)

    Article  CAS  Google Scholar 

  73. Schneider, H.-J.: Limitations and extensions of the lock-and-key principle: differences between gas state, solution and solid state structures. Int. J. Mol. Sci. 16, 6694–6717 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leffler, J.E.: The enthalpy–entropy relationship and its implications for organic chemistry. J. Org. Chem. 20, 1202–1231 (1955)

    Article  CAS  Google Scholar 

  75. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  PubMed  Google Scholar 

  76. Ford, D.M.: Enthalpy–entropy compensation is not a general feature of weak association. J. Am. Chem. Soc. 127, 16167–16170 (2005)

    Article  CAS  PubMed  Google Scholar 

  77. Leung, D.H., Bergman, R.G., Raymond, K.N.: Enthalpy–entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water. J. Am. Chem. Soc. 130, 2798–2805 (2008)

    Article  CAS  PubMed  Google Scholar 

  78. Fukuhara, G.: Polymer-based supramolecular sensing and application to chiral photochemistry. Polym. J. 47, 649–655 (2015)

    Article  CAS  Google Scholar 

  79. Lavigne, J.J., Anslyn, E.V.: Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angew. Chem. Int. Ed. 40, 3118–3130 (2001)

    Article  CAS  Google Scholar 

  80. Umali, A.P., Anslyn, E.V.: A general approach to differential sensing using synthetic molecular receptors. Curr. Opin. Chem. Biol. 14, 685–692 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fukuhara, G., Madenci, S., Polkowska, J., Bastkowski, F., Klärner, F.-G., Origane, Y., Kaneda, M., Mori, T., Wada, T., Inoue, Y.: Inherently chiral molecular clips: synthesis, chiroptical properties, and application to chiral discrimination. Chem. Eur. J. 13, 2473–2479 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. Fukuhara, G., Klärner, F.-G., Mori, T., Wada, T., Inoue, Y.: Supramolecular complexation and photochirogenesis with inherently chiral molecular clip: enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene and polar photoaddition to 1,1-diphenylpropene. Photochem. Photobiol. Sci. 7, 1493–1500 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. Wiegmann, S., Fukuhara, G., Neumann, B., Stammler, H.-G., Inoue, Y., Mattay, J.: Inherently chiral resorcin[4]arenes with urea and amide side arms: synthesis, structure and chiral recognition. Eur. J. Org. Chem. (2013). https://doi.org/10.1002/ejoc.201201272

    Article  Google Scholar 

  84. Rowan, A.E., Elemans, J.A.A.W., Nolte, R.J.M.: Molecular and supramolecular objects from glycoluril. Acc. Chem. Res. 32, 995–1006 (1999)

    Article  CAS  Google Scholar 

  85. Klärner, F.-G., Kahlert, B.: Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor–substrate complexes. Acc. Chem. Res. 36, 919–932 (2003)

    Article  CAS  PubMed  Google Scholar 

  86. Klärner, F.-G., Burkert, U., Kamieth, M., Boese, R., Benet-Buchholz, J.: Molecular tweezers as synthetic receptors: molecular recognition of electron-deficient aromatic and aliphatic substrates. Chem. Eur. J. 5, 1700–1707 (1999)

    Article  Google Scholar 

  87. Klärner, F.-G., Polkowska, J., Panitzky, J., Seelbach, U.P., Burkert, U., Kamieth, M., Baumann, M., Wigger, A.E., Boese, R., Bläser, D.: Effect of substituents on the complexation of aromatic and quinoid substrates with molecular tweezers and clips. Eur. J. Org. Chem. (2004). https://doi.org/10.1002/ejoc.200300704

    Article  Google Scholar 

  88. Fokkens, M., Schrader, T., Klärner, F.-G.: A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 127, 14415–14421 (2005)

    Article  CAS  PubMed  Google Scholar 

  89. Klärner, F.-G., Kahlet, B., Nellesen, A., Zienau, J., Ochsenfeld, C., Schrader, T.: Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host–guest complex formation, quantum chemical 1H NMR shift calculation. J. Am. Chem. Soc. 128, 4831–4841 (2006)

    Article  CAS  PubMed  Google Scholar 

  90. Klärner, F.-G., Panitzky, J., Bläser, D., Boese, R.: Synthesis and supramolecular structures of molecular clips. Tetrahedron 57, 3673–3687 (2001)

    Article  Google Scholar 

  91. Brown, S.P., Schaller, T., Seelbach, U.P., Koziol, F., Ochsenfeld, C., Klärner, F.-G., Spiess, H.W.: Structure and dynamics of the host–guest complex of a molecular tweezer: coupling synthesis, soli-state NMR, and quantum-chemical calculations. Angew. Chem. Int. Ed. 40, 717–720 (2001)

    Article  CAS  Google Scholar 

  92. Yang, H., Bohne, C.: Chiral discrimination in the fluorescence quenching of pyrene complexed to β-cyclodextrin. J. Photochem. Photobiol. A 86, 209–217 (1995)

    Article  CAS  Google Scholar 

  93. Kano, K., Hasegawa, H., Miyamura, M.: Chiral recognition of dipeptide methyl esters by an anionic β-cyclodextrin. Chirality 13, 474–482 (2001)

    Article  CAS  PubMed  Google Scholar 

  94. Rekharsky, M.V., Inoue, Y.: Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and coulombic interactions. J. Am. Chem. Soc. 124, 813–826 (2002)

    Article  CAS  PubMed  Google Scholar 

  95. Ma, X., Zhao, Y.: Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 115, 7794–7839 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N.: Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985)

    Article  CAS  PubMed  Google Scholar 

  97. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A.: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988)

    Article  CAS  PubMed  Google Scholar 

  98. de la Cruz, S., López-Calleja, I., Martín, R., González, I., Alcocer, M., García, T.: Recent advances in the detection of allergens in foods. Methods Mol. Biol. 263–295 (2017)

  99. Grigore, A., Albulescu, A., Albulescu, R.: Current methods for tumor-associated macrophages investigation. J. Immunoassay Immunochem. 39, 119–135 (2018)

    Article  CAS  PubMed  Google Scholar 

  100. Monod, J., Changeux, J.-P., Jacob, F.: Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963)

    Article  CAS  PubMed  Google Scholar 

  101. Kobe, B., Kemp, B.E.: Active site-directed protein regulation. Nature 402, 373–376 (1999)

    Article  CAS  PubMed  Google Scholar 

  102. Whitty, A.: Cooperativity and biological complexity. Nat. Chem. Biol. 4, 435–439 (2008)

    Article  CAS  PubMed  Google Scholar 

  103. Williamson, J.R.: Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4, 458–465 (2008)

    Article  CAS  PubMed  Google Scholar 

  104. Shinkai, S., Ikeda, M., Sugasaki, A., Takeuchi, M.: Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. Acc. Chem. Res. 34, 494–503 (2001)

    Article  CAS  PubMed  Google Scholar 

  105. Hunter, C.A., Anderson, H.L.: What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009)

    Article  CAS  Google Scholar 

  106. Rebek, J. Jr.: Binding forces, equilibria, and rates: new models for enzymic catalysis. Acc. Chem. Res. 17, 258–264 (1984)

    Article  CAS  Google Scholar 

  107. Zhu, L., Anslyn, E.V.: Signal amplification by allosteric catalysis. Angew. Chem. Int. Ed. 45, 1190–1196 (2006)

    Article  CAS  Google Scholar 

  108. Oliveri, C.G., Ulmann, P.A., Wiester, M.J., Mirkin, C.A.: Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc. Chem. Res. 41, 1618–1629 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Takeuchi, M., Ikeda, M., Sugasaki, A., Shinkai, S.: Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc. Chem. Res. 34, 865–873 (2001)

    Article  CAS  PubMed  Google Scholar 

  110. Kovbasyuk, L., Krämer, R.: Allosteric supramolecular receptors and catalysts. Chem. Rev. 104, 3161–3187 (2004)

    Article  CAS  PubMed  Google Scholar 

  111. von Krbek, L.K.S., Schalley, C.A., Thordarson, P.: Assessing cooperativity in supramolecular systems. Chem. Soc. Rev. 46, 2622–2637 (2017)

    Article  Google Scholar 

  112. Thomas, III. S.W., Joly, G.D., Swager, T.M.: Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007)

    Article  CAS  PubMed  Google Scholar 

  113. Rochat, S., Swager, T.M.: Conjugated amplifying polymers for optical sensing applications. ACS Appl. Mater. Interfaces 5, 4488–4502 (2013)

    Article  CAS  PubMed  Google Scholar 

  114. Conners, K.A.: Binding Constants. Wiley, New York (1987)

    Google Scholar 

  115. Marsella, M.J., Swager, T.M.: Designing conducting polymer-based sensors: selective ionochromic response in crown ether containing polythiophenes. J. Am. Chem. Soc. 115, 12214–12215 (1993)

    Article  CAS  Google Scholar 

  116. Fukuhara, G., Inoue, Y.: Chirality-sensing binaphthocrown ether-polythiophene conjugate. Chem. Eur. J. 16, 7859–7864 (2010)

    Article  CAS  PubMed  Google Scholar 

  117. Sakai, R., Okade, S., Barasa, E.B., Kakuchi, R., Ziabka, M., Umeda, S., Tsuda, K., Satoh, T., Kakuchi, T.: Efficient colorimetric anion detection based on positive allosteric system of urea-functionalized poly(pheneylacetylene) receptor. Macromolecules 43, 7406–7411 (2010)

    Article  CAS  Google Scholar 

  118. Fukuhara, G., Inoue, Y.: Chirality sensing by a fluorescent binaphthocrown ether–polythiophene conjugate. Chem. Commun. 48, 1641–1643 (2012)

    Article  CAS  Google Scholar 

  119. Montalti, M., Credi, A., Prodi, L., Gandolfi, A.T.: Handbook of Photochemistry. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  120. Fukuhara, G., Inoue, Y.: Peptide chirality sensing by a cyclodextrin-polythiophene conjugate. Chem. Eur. J. 18, 11459–11464 (2012)

    Article  CAS  PubMed  Google Scholar 

  121. Ishida, Y., Fukuhara, G.: Efficient cleavage of permethylated cyclodextrins. ACS Omega 3, 6279–6282 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhai, L., Pilston, R.L., Zaiger, K.L., Stokes, K.K., McCullough, R.D.: A simple method to generate side-chain derivatives of regioregular polythiophene via the GRIM metathesis and post-polymerization functionalization. Macromolecules 36, 61–64 (2003)

    Article  CAS  Google Scholar 

  123. James, T.D., Sandanayake, K.R.A.S., Shinaki, S.: Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374, 345–347 (1995)

    Article  CAS  Google Scholar 

  124. Yashima, E., Nimura, T., Matsushima, T., Okamoto, Y.: Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J. Am. Chem. Soc. 118, 9800–9801 (1996)

    Article  CAS  Google Scholar 

  125. Samoei, G.K., Wang, W., Escobedo, J.O., Xu, X., Schneider, H.-J., Cook, R.L., Strongin, R.M.: A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew. Chem. Int. Ed. 45, 5319–5322 (2006)

    Article  CAS  Google Scholar 

  126. Yang, X., Lee, M.-C., Sartain, F., Pan, X., Lowe, C.R.: Designed boronate ligands for glucose-selective holographic sensors. Chem. Eur. J. 12, 8491–8497 (2006)

    Article  CAS  PubMed  Google Scholar 

  127. Schiller, A., Wessling, R.A., Singaram, B.: A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew. Chem. Int. Ed. 46, 6457–6459 (2007)

    Article  CAS  Google Scholar 

  128. Pal, A., Bérubé, M., Hall, D.G.: Design, synthesis, and screening of a library of peptidyl bis(boroxoles) as oligosaccharide receptors in water: identification of a receptor for the tumor marker TF-antigen disaccharide. Angew. Chem. Int. Ed. 49, 1492–1495 (2010)

    Article  CAS  Google Scholar 

  129. Kobayashi, K., Asakawa, Y., Kato, Y., Aoyama, Y.: Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH–π interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992)

    Article  CAS  Google Scholar 

  130. Schmuck, C., Schwegmann, M.: Recognition of anionic carbohydrates by an artificial receptor in water. Org. Lett. 7, 3517–3520 (2005)

    Article  CAS  PubMed  Google Scholar 

  131. Mazik, M., Cavga, H.: Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media. J. Org. Chem. 71, 2957–2963 (2006)

    Article  CAS  PubMed  Google Scholar 

  132. Waki, M., Abe, H., Inouye, M.: Translation of mutarotation into induced circular dichroims signals through helix inversion of host polymers. Angew. Chem. Int. Ed. 46, 3059–3061 (2007)

    Article  CAS  Google Scholar 

  133. Goto, H., Furusho, Y., Yashima, E.: Double helical oligoresorcinols specifically recognize oligosaccharides via heteroduplex formation through noncovalent interactions in water. J. Am. Chem. Soc. 129, 9168–9174 (2007)

    Article  CAS  PubMed  Google Scholar 

  134. Ferrand, Y., Crump, M.P., Davis, A.P.: A synthetic lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007)

    Article  CAS  PubMed  Google Scholar 

  135. Ke, C., Destecroix, H., Crump, M.P., Davis, A.P.: A simple and accessible synthetic lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012)

    Article  CAS  PubMed  Google Scholar 

  136. Mooibroek, T.J., Casas-Solvas, J.M., Harniman, R.L., Renney, C.M., Carter, T.S., Crump, M.P., Davis, A.P.: A threading receptor for polysaccharides. Nat. Chem. 8, 69–74 (2016)

    Article  CAS  PubMed  Google Scholar 

  137. Renney, C.M., Fukuhara, G., Inoue, Y., Davis, A.P.: Binding or aggregation? hazards of interpretation in studies of molecular recognition by porphyrins in water. Chem. Commun. 51, 9551–9554 (2015)

    Article  CAS  Google Scholar 

  138. Davis, A.P.: Synthetic lectins. Org. Biomol. Chem. 7, 3629–3638 (2009)

    Article  CAS  PubMed  Google Scholar 

  139. Mazik, M.: Recent developments in the molecular recognition of carbohydrates by artificial receptors. RSC Adv. 2, 2630–2642 (2012)

    Article  CAS  Google Scholar 

  140. Deslandes, Y., Marchessault, R.H., Sarko, A.: Triple-helical structure of (1→3)-β-d-glucan. Macromolecules 13, 1466–1471 (1980)

    Article  CAS  Google Scholar 

  141. Numata, M., Shinkai, S.: ‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures. Chem. Commun. 47, 1961–1975 (2011)

    Article  CAS  Google Scholar 

  142. Ogawa, K., Miyagi, M., Fukumoto, T., Watanabe, T.: Effect of 2-chloroethanol, dioxane, or water on the conformation of a gel-forming β-1,3-d-glucan in DMSO. Chem. Lett. 2, 943–946 (1973)

    Article  Google Scholar 

  143. Sakurai, K., Shinkai, S.: Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: Schizophyllan. J. Am. Chem. Soc. 122, 4520–4521 (2000)

    Article  CAS  Google Scholar 

  144. Kimura, T., Koumoto, K., Sakurai, K., Shinkai, S.: Polysaccharide-polynucleotide complexes (III): a novel interaction between the β-1,3-glucan family and the single-stranded RNA poly(C). Chem. Lett. 29, 1242–1243 (2000)

    Article  Google Scholar 

  145. Fukuhara, G., Inoue, Y.: Oligosaccharide sensing with chromophore-modified curdlan in aqueous media. Chem. Commun. 46, 9128–9130 (2010)

    Article  CAS  Google Scholar 

  146. Results for the structural conversion of DABz-Cur will be published elsewhere

  147. Eleftheriadou, I., Grigoropoulou, P., Katsilambros, N., Tentolouris, N.: The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr. Diabetes Rev. 4, 340–356 (2008)

    Article  CAS  PubMed  Google Scholar 

  148. Fukuhara, G., Sasaki, M., Numata, M., Mori, T., Inoue, Y.: Oligosaccharide sensing in aqueous media by porphyrin-curdlan conjugates: a prêt-á-porter rather than haute-couture approach. Chem. Eur. J. 23, 11272–11278 (2017)

    Article  CAS  PubMed  Google Scholar 

  149. Fukuhara, G., Inoue, Y.: Highly selective oligosaccharide sensing by a curdlan–polythiophene hybrid. J. Am. Chem. Soc. 133, 768–770 (2011)

    Article  CAS  PubMed  Google Scholar 

  150. Haraguchi, S., Tsuchiya, Y., Shiraki, T., Sugikawa, K., Sada, K., Shinkai, S.: On the helical motif of the complexes created by association of helix-forming schizophyllan (SPG) and helix-forming polythiophene derivatives. Chem. Eur. J. 15, 11221–11228 (2009)

    Article  CAS  PubMed  Google Scholar 

  151. Fukuhara, G., Imai, M., Fuentealba, D., Ishida, Y., Kurohara, H., Yang, C., Mori, T., Uyama, H., Bohne, C., Inoue, Y.: Electrostatically promoted dynamic hybridization of glucans with cationic polythiophene. Org. Biomol. Chem. 14, 9741–9750 (2016)

    Article  CAS  PubMed  Google Scholar 

  152. Rekharsky, M.V., Mori, T., Yang, C., Ko, Y.H., Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A.E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M.K., Kim, K., Inoue, Y.: A synthetic host–guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc. Natl Acad. Sci. U.S.A. 104, 20737–20742 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  153. Carr, R., Evans, N.H., Parker, D.: Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem. Soc. Rev. 41, 7673–7686 (2012)

    Article  CAS  PubMed  Google Scholar 

  154. Tanaka, H., Inoue, Y., Mori, T.: Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors. ChemPhotoChem. 2, 386–402 (2018)

    Article  CAS  Google Scholar 

  155. Sagara, Y., Kato, T.: Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009)

    Article  CAS  PubMed  Google Scholar 

  156. Sagara, Y., Tamaoki, N., Fukuhara, G.: Cyclophane-based fluorescence tuning induced by hydrostatic pressure changes. ChemPhotoChem. 2, 959–963 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author greatly appreciate the committee members of Association of Research for Host–Guest and Supramolecular Chemistry for awarding “SHGSC Japan Award of Excellence 2018”. The author is also deeply grateful to Prof. Yoshihisa Inoue of Osaka University for his positive and constructive suggestions, to all the group members developed the studies in this review, and to the financial support by the Japan Society for the Promotion of Science (JSPS) (Nos. 20850023, 23750129, 26620061, and JP16H06041) and Japan Science Technology Agency (JST), PRESTO (No. JPMJPR17PA) and by research grants from the Nikko Memorial Foundation, the Shorai Foundation for Science and Technology, the Nikki-Saneyoshi (JGC-S) Scholarship Foundation, the Ogasawara Foundation for the Promotion of Science & Engineering, the Iwatani Naoji Foundation, the Sumitomo Foundation, the Nakatani Foundation, and the Kurata Grants. The author finally thanks Ms. Yuki Fukuhara for her assistance in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Fukuhara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a paper selected for the “SHGCS Japan Award of Excellence 2018”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuhara, G. Allosteric signal-amplification sensing with polymer-based supramolecular hosts. J Incl Phenom Macrocycl Chem 93, 127–143 (2019). https://doi.org/10.1007/s10847-019-00881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00881-2

Keywords

Navigation