Skip to main content
Log in

Water structuring inside the cavities of cucurbit[n]urils (n = 5–8): a quantum-chemical forecast

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work we report findings of the quantum-chemical examination of water structuring in the cavities of cucurbit[n]urils (CB[n]), n = 5–8 obtained within the density functional theory. The thermodynamically most stable structures of inclusion compounds (H2O)m@CB[n] were determined for different numbers m of H2O molecules inside the cavities. From the viewpoint of thermodynamics, the most probable numbers m of water molecules in the CB[n] homologues are the following: m = 2 for CB[5], m = 4 for CB[6], m = 8 for CB[7] and m = 10 for CB[8]. For the case of CB[6] synthesized in aqueous solution, we compared its experimental IR spectrum with that calculated quantum-chemically for the model inclusion systems (H2O)m@CB[6] where m ranges from 1 to 6. The best agreement between the experimental and theoretical spectra was observed for (H2O)4@CB[6], in complete agreement with the conclusion made based on the thermodynamic estimations. Our results are also in good agreement with other available estimates of the most probable number of water molecules in CB[n].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)

    Article  CAS  Google Scholar 

  2. Gerasko, O.A., Samsonenko, D.G., Fedin, V.P.: Supramolecular chemistry of cucurbiturils. Russ. Chem. Rev. 71, 741–760 (2002)

    Article  CAS  Google Scholar 

  3. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003)

    Article  CAS  Google Scholar 

  4. Lagona, J., Fettinger, J.C., Isaacs, L.: Cucurbit[n]uril analogues. J. Org. Lett. 5, 3745–3747 (2003)

    Article  CAS  Google Scholar 

  5. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)

    Article  CAS  Google Scholar 

  6. Ni, X.-L., Xiao, X., Cong, H., Liang, L.-L., Cheng, K., Cheng, X.-J., Ji, N.-N., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013)

    Article  CAS  Google Scholar 

  7. Kim, S.-Y., Jung, I.-S., Lee, E., Kim, J., Sakamoto, S., Yanaguchi, K., Kim, K.: Macrocycles within macrocycles: cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew. Chem. Int. Ed. 40, 2119–2121 (2001)

    Article  CAS  Google Scholar 

  8. Mitkina, T.V., Sokolov, M.N., Naumov, D.Y., Kuratieva, N.V., Gerasko, O.A., Fedin, V.P.: Jørgensen complex within a molecular container: selective encapsulation of trans-[Co(en)2Cl2]+ into cucurbit[8]uril and influence of inclusion on guest’s properties. Inorg. Chem. 45, 6950–6955 (2006)

    Article  CAS  Google Scholar 

  9. Mitkina, T.V., Zakharchuk, N.F., Naumov, D.Y., Gerasko, O.A., Fenske, D., Fedin, V.P.: Syntheses, structures, and electrochemical properties of inclusion compounds of cucurbit[8]uril with cobalt(III) and nickel(II) complexes. Inorg. Chem. 47, 6748–6755 (2008)

    Article  CAS  Google Scholar 

  10. Bali, M.S., Buck, D.P., Coe, A.J., Day, A.I., Collins, J.G.: Cucurbituril binding of trans-[{PtCl(NH3)2}2(μ-NH2(CH2)8NH2)]2+ and the effect on the reaction with cysteine. J. Chem. Soc. Dalton Trans. 45, 5337–5344 (2006)

    Article  Google Scholar 

  11. Wheate, N.J., Day, A.I., Blanch, R.J., Arnold, A.P., Cullinane, C., Collins, J.G.: Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxity in cancer treatment. Chem. Commun. 12, 1424–1425 (2004)

    Article  Google Scholar 

  12. Wheate, N.J., Buck, D.P., Day, A.I., Collins, J.G.: Cucurbit[n]uril binding of platinum anticancer complexes. Chem. Soc. Dalton Trans. 3, 451–458 (2006)

    Article  Google Scholar 

  13. Kim, K., Jeon, Y.J., Kim, S.-Y., Ko, Y.H., Postech Foundation, S. Korea, PCT Int. Appl. 42 (2002)

  14. Wheate, N.J., Day, A.I., Blanch, R.J., Collins, J.G.: UNISEARCH Limited, Australia, PCT Int. Appl. 63 (2005)

  15. Pichierri, F.: Density functional study of cucurbituril and its sulfur analogue. Chem. Phys. Lett. 390, 214–219 (2004)

    Article  CAS  Google Scholar 

  16. Pichierri, F.: DFT study of cucurbit[n]uril, n = 5–10. THEOCHEM. 765, 151–152 (2006)

    Article  CAS  Google Scholar 

  17. Wagner, B.D., Stojanovic, N., Day, A.I., Blanch, R.J.: Host properties of cucurbit[7]uril: fluorescence enhancement of anilinonaphthalene sulfonates. J. Phys. Chem. B. 107, 10741–10746 (2003)

    Article  CAS  Google Scholar 

  18. Gadde, S., Batchelor, E.K., Weiss, J.P., Ling, Y., Kaifer, A.E.: Control of H- and J-aggregate formation via host–guest complexation using cucurbituril hosts. J. Am. Chem. Soc. 130, 17114–17119 (2008)

    Article  CAS  Google Scholar 

  19. Suvitha, A., Venkataramanan, N.S., Mizuseki, H., Kawazoe, Y., Ohuchi, N.: Theoretical insights into the formation, structure, and electronic properties of anticancer oxaplatin drug and cucurbit[n]urils n = 5 to 8. J. Incl. Phenom. Macrocycl. Chem. 66, 213–218 (2009)

    Article  Google Scholar 

  20. Oh, K.S., Yoon, J., Kim, K.S.: Structural stabilities and self-assembly of cucurbit[n]uril (n = 4–7) and decametylcucurbituril (n = 4–6): theoretical study. J. Phys. Chem. B. 105, 9726–9731 (2001)

    Article  CAS  Google Scholar 

  21. Chakhaborty, A., Wu, A., Witt, D., Lagona, J., Fettinger, J.C., Isaacs, L.: Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. J. Am. Chem. Soc. 124, 8297–8306 (2002)

    Article  Google Scholar 

  22. Buschmann, H.-J., Wego, A., Zielesny, A., Schollmeyer, E.: Structure, electronic properties and NMR-shielding of cucurbit[n]urils. J. Incl. Phenom. Macrocycl. 54, 85–88 (2006)

    Article  CAS  Google Scholar 

  23. Gobre, V.V., Pinjari, R.V., Gejji, S.P.: Density functional studies of charge distribution, vibrational spectra and NMR chemical shifts in cucurbit[n]uril (n = 5–12) hosts. J. Phys. Chem. A. 144, 4464–4470 (2010)

    Article  Google Scholar 

  24. Mu, T.W., Liu, L., Zhang, K.C., Guo, Q.X.: A theoretical study on the stereoisomerism in the complex of cucurbit[8]uril with 2,6-bis(4,5-1H-imidazol-2-yl)naphthalene. Chin. Chem. Let. 12, 783–786 (2001)

    CAS  Google Scholar 

  25. Pinjara, R.V., Gejji, S.P.: Electronic structure, molecular electrostatic potential, and NMR chemical shifts in cucurbit[n]urils (n = 5–8), ferrocene, and their complexes. J. Phys. Chem. B. 112, 12679–12686 (2008)

    Article  Google Scholar 

  26. Rawashdeh, A.M.M., El-Barghouthi, M.I., Assaf, K.I., Al-Gharabli, S.I.: Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and β-cyclodextrin: a computational study. J. Incl. Phenom. Macrocycl. Chem. 64, 357–365 (2009)

    Article  CAS  Google Scholar 

  27. Márquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004)

    Article  Google Scholar 

  28. Pinjari, R.V., Gejji, S.P.: On the binding of SF6 to cucurbit[6]uril host: density functional study. J. Phys. Chem. A. 114, 2338–2343 (2010)

    Article  CAS  Google Scholar 

  29. Ivanov, D.A., Petrov, N.K., Nikitina, E.A., Basilevsky, M.V., Vedernikov, A.I., Gromov, S.P., Alfimov, M.V.: The 1:1 Host–guest complexation between cucurbit[7]uril and styryl dye. J. Phys. Chem. A. 115, 4505–4510 (2011)

    Article  CAS  Google Scholar 

  30. Megyesi, M., Biszók, L., Jablonkai, I.: Highly sensitive fluorescence response to inclusion complex formation of berberine alkoid with cucurbit[7]uril. J. Phys. Chem. C. 112, 3410–3416 (2008)

    Article  CAS  Google Scholar 

  31. Miskolczy, Z., Biczók, L., Megyesi, M., Jablonkai, I.: Inclusion complex formation of ionic liquids and other cationic organic compounds with cucurbit[7]uril studied by 4′,6-diamidini-2-phenylindole fluorescent probe. J. Phys. Chem. B. 113, 1645–1651 (2009)

    Article  CAS  Google Scholar 

  32. Pattabiraman, M., Natarajan, A., Kaanumalle, L.S., Ramamurthy, V.: Templating photodimerization of trans-cinnamic acids with cucurbit[8]uril and γ-cyclodextrin. Org. Lett. 7, 529–532 (2005)

    Article  CAS  Google Scholar 

  33. Pattabiraman, M., Kaanumalle, L.S., Natarajan, A., Ramamurthy, V.: Regioselective photodimerization of cinnamic acids in water: templation with cucurbiturils. Langmuir. 22, 7605–7609 (2006)

    Article  CAS  Google Scholar 

  34. Choudhury, S.D., Mohanty, J., Uadhyaya, H.P., Bhasikuttan, A.C., Pal, H.: Photophysical studies on the noncovalent interaction of thioflavin T with cucurbit[n]uril macrocycles. J. Phys. Chem. B. 113, 1891–1898 (2009)

    Article  Google Scholar 

  35. Isobe, H., Sato, S., Nakamura, E.: Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. J. Org. Lett. 4, 1287–1289 (2002)

    Article  CAS  Google Scholar 

  36. Pichieri, F.: Nanosoldering of thia-cucurbituril macrocycles with transition metals affords novel tubular nanostructures: a computational study. Chem. Phys. Lett. 403, 252–256 (2004)

    Article  Google Scholar 

  37. Mock, W.L., Shih, N.Y.: Host-guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)

    Article  CAS  Google Scholar 

  38. Mock, W.L., Shih, N.-Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986)

    Article  CAS  Google Scholar 

  39. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–542 (2000)

    Article  CAS  Google Scholar 

  40. Jeon, Y.-M., Kim, J., Wang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)

    Article  CAS  Google Scholar 

  41. Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: physical properties and volumes of their cavity determine the hydrophobic driving force for host-guest complexation. Isr. J. Chem. 51, 559–577 (2011)

    Article  CAS  Google Scholar 

  42. Laikov, D.N.: Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett. 281, 151–156 (1997)

    Article  CAS  Google Scholar 

  43. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  44. Laikov, D.N.: A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem. Phys. Lett. 416, 116–120 (2005)

    Article  CAS  Google Scholar 

  45. ChemCraft, Tool for treatment of chemical data. http://www.chemcraftprog.com. Accessed 1 July 2011

  46. Maheshwary, S., Patel, N., Sathyamurthy, N.: Structure and stability of water clusters (H2O)n n = 8–20: an ab initio investigation. J. Phys. Chem. A. 105, 10525–10537 (2001)

    Article  CAS  Google Scholar 

  47. Lee, H.M., Suh, S.B., Lee, J.Y., Tarakeshwar, P., Kim, K.S.: Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 112, 9759–9772 (2000)

    Article  CAS  Google Scholar 

  48. Ludwig, R.: Water: from cluster to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001)

    Article  CAS  Google Scholar 

  49. Masliy, A.N., Grishaeva, T.N., Kuznetsov, A.M., Bakovets, V.V.: Quantum-chemical study of structurization of water in the cavity of cucurbit[6]uryl. J. Struct. Chem. 50, 391–396 (2009)

    Article  Google Scholar 

  50. Tsai, C.J., Jordan, K.D.: Theoretical study of the (H2O)6 cluster. Chem. Phys. Lett. 213, 181–188 (1993)

    Article  CAS  Google Scholar 

  51. Laasonen, K., Parrinello, M., Car, R., Lee, C., Vanderbilt, D.: Structures of small water clusters using gradient-corrected density functional theory. Chem. Phys. Lett. 207, 208–213 (1993)

    Article  CAS  Google Scholar 

  52. Kim, K., Jordan, K.D., Zwier, T.S.: Low-energy structures and vibrational frequencies of the water hexamer: comparison with benzene-(H2O)6. J. Am. Chem. Soc. 116, 11568–11569 (1994)

    Article  CAS  Google Scholar 

  53. Lee, C., Chen, H., Fitzgerald, G.: Chemical bonding in water clusters. J. Chem. Phys. 102, 1266–1269 (1995)

    Article  CAS  Google Scholar 

  54. Estrin, D.A., Paglieri, L., Corongiu, G., Clementi, E.: Small clusters of water molecules using density functional theory. J. Chem. Phys. 100, 8701–8711 (1996)

    Article  CAS  Google Scholar 

  55. Liu, K., Brown, M.G., Carter, C., Saykally, R.J., Gregory, J.K., Clary, D.C.: Characterization of a cage form of the water hexamer. NATURE. 381, 501–503 (1996)

    Article  CAS  Google Scholar 

  56. Kim, J., Kim, K.S.: Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies. J. Chem. Phys. 109, 5886–5895 (1998)

    Article  CAS  Google Scholar 

  57. Kryachko, E.S.: Ab initio studies of the conformations of water hexamer: modelling the penta-coordinated hydrogen-bonded pattern in liquid water. Chem. Phys. Lett. 314, 353–363 (1999)

    Article  CAS  Google Scholar 

  58. Xantheas, S.S., Burnham, C.J., Harrison, R.J.: Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 116, 1493–1499 (2002)

    Article  CAS  Google Scholar 

  59. Su, J.T., Xu, X., Goddard, W.A., III: Accurate energies and structures for large water clusters using the X3LYP hybrid density functional. J. Phys. Chem. A. 108, 10518–10526 (2004)

    Article  CAS  Google Scholar 

  60. Fellers, R.S., Leforestier, C., Braly, L.B., Brown, M.G., Saykally, R.J.: Spectroscopic determination of the water pair potential. Science. 284, 945–948 (1999)

    Article  CAS  Google Scholar 

  61. Fajardo, M.E., Tam, S.: Observation of the cyclic water hexamer in solid parahydrogen. J. Chem. Phys. 115, 6807–6810 (2001)

    Article  CAS  Google Scholar 

  62. Tarmyshov, K.B., Müller-Plathe, F.: Ion binding to cucurbit[6]uril: structure and dynamics. J. Phys. Chem. B. 110, 14463–14468 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation (the basic part of the state task No. 4.5382.2017/8.9). The authors also thank L.A. Sheludyakova and E.A. Kovalenko (Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation) for kindly providing IR spectra of CB[6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana N. Grishaeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 562 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishaeva, T.N., Masliy, A.N. & Kuznetsov, A.M. Water structuring inside the cavities of cucurbit[n]urils (n = 5–8): a quantum-chemical forecast. J Incl Phenom Macrocycl Chem 89, 299–313 (2017). https://doi.org/10.1007/s10847-017-0751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0751-3

Keywords

Navigation