Skip to main content
Log in

Chemical conjugation with cyclodextrins as a versatile tool for drug delivery

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrins (CDs) are a well-known family of macrocyclic oligosaccharides consisted of α-(1, 4) linked glucose subunits, and have been generally used as mimetic enzymes, chiral reagents, sensors, excipients and drug delivery carriers, due to their hydrophobic and optically active interiors. A more recent interest focuses on the chemical conjugation of CDs with drugs, where a drug is covalently bonded to CDs with better physicochemical properties for controlled drug delivery. This contribution outlines the potential applications of the drug-CDs conjugates in different areas of drug delivery, particularly in peptides, proteins, and nucleic acids (DNA, RNA and gene) drug delivery. Finally, the future directions of research in this field are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

(Copyright 2013 Wiley-VCH Verlag)

Similar content being viewed by others

References

  1. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  3. Kano, K., Nishiyabu, R.: General mechanism for chiral recognition by native and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 44, 355–359 (2002)

    Article  CAS  Google Scholar 

  4. Breslow, R., Dong, S.D.: Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998)

    Article  CAS  Google Scholar 

  5. Piperaki, S., Parissi-Poulou, M.: Use of cyclodextrins as chiral selectors for direct resolution of the enantiomers of fluoxetine and its metabolite norfluoxetine by HPLC. Chirality. 5, 258–266 (2010)

    Article  Google Scholar 

  6. Ponnu, A., Anslyn, E.V.: A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramol. Chem. 22, 65–71 (2010)

    Article  CAS  Google Scholar 

  7. Loftsson, T., Brewster, M.E.: Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 101, 3019–3032 (2012)

    Article  CAS  Google Scholar 

  8. Sharma, N., Baldi, A.: Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. 23, 739–757 (2016)

    Google Scholar 

  9. Gonzalez-Gaitano, G., Isasi, J.R., Velaz, I., Zornoza, A.: Drug carrier systems based on cyclodextrin supramolecular assemblies and polymers: present and perspectives. Curr. Pharm. Des. 23, 411–432 (2017)

    Article  CAS  Google Scholar 

  10. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  11. Masson, M., Loftsson, T., Jonsdottir, S., Fridriksdottir, H., Petersen, S.D.: Stabilisation of ionic drugs through complexation with non-ionic and ionic cyclodextrins. Int. J. Pharm. 164, 45–55 (1998)

    Article  CAS  Google Scholar 

  12. Oda, M., Saitoh, H., Kobayashi, M., Aungst, B.J.: β-Cyclodextrin as a suitable solubilizing agent for in situ absorption study of poorly water-soluble drugs. Int. J. Pharm. 280, 95–102 (2004)

    Article  CAS  Google Scholar 

  13. Carrier, R., Miller, L., Ahmed, M.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release. 123, 78–99 (2007)

    Article  CAS  Google Scholar 

  14. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  15. Valle, E.M.M.D.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  16. Arun, R., Kumar, C.K.A., Sravanthi, V.V.N.S.S.: Cyclodextrins as drug carrier molecule: a review. Sci. Pharm. 76, 567–598 (2008)

    Article  Google Scholar 

  17. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech. 6, E329–E357 (2005)

    Article  Google Scholar 

  18. Arima, H., Motoyama, K., Higashi, T.: Potential use of cyclodextrins as drug carriers and active pharmaceutical ingredients. Chem. Pharm. Bull. 65, 341–348 (2017)

    Article  CAS  Google Scholar 

  19. Klinge, S.A., Sawyer, G.A.: Effectiveness and safety of topical versus oral nonsteroidal anti-inflammatory drugs: a comprehensive review. Phys. Sportsmed. 41, 64–74 (2013)

    Article  Google Scholar 

  20. Rainsford, K.D.: Anti-inflammatory drugs in the 21st century. Subcell Biochem. 42, 3–27 (2007)

    Article  CAS  Google Scholar 

  21. Tziona, P., Theodosisnobelos, P., Rekka, E.A.: Medicinal chemistry approaches of controlling gastrointestinal side effects of non-steroidal anti-inflammatory drugs. Endogenous protective mechanisms and drug design. Med. Chem. 13, 1–13 (2017)

    Article  Google Scholar 

  22. Abdel-Tawab, M., Zettl, H., Schubert-Zsilavecz, M.: Nonsteroidal anti-inflammatory drugs: a critical review on current concepts applied to reduce gastrointestinal toxicity. Curr. Med. Chem. 16, 2042–2063 (2009)

    Article  CAS  Google Scholar 

  23. Kumar, P., Mishra, B.: Colon targeted drug delivery systems–an overview. Curr. Drug Deliv. 5, 186–198 (2008)

    Article  CAS  Google Scholar 

  24. Hagiwara, Y., Arima, H., Miyamoto, Y., Hirayama, F., Uekama, K.: Preparation and pharmaceutical evaluation of liposomes entrapping salicylic acid/γ-cyclodextrin conjugate. Chem. Pharm. Bull. 54, 26–32 (2006)

    Article  CAS  Google Scholar 

  25. Ma, P.P., Luo, S.X., Wang, J., Xu, L.S., Wang, Z.Z.: β-Cyclodextrin based colon targeted delivery systems of aspirin: synthesis, and in vitro assessment. J. Control. Release. 213, e150 (2015)

    Article  Google Scholar 

  26. Vieira, A.C., Serra, A.C., Veiga, F.J., Gonsalves, A.M., Basit, A.W., Murdan, S.: Diclofenac-β-cyclodextrin for colonic drug targeting: in vivo performance in rats. Int. J. Pharm. 500, 366–370 (2016)

    Article  CAS  Google Scholar 

  27. Vieira, A.C., Serra, A.C., Carvalho, R.A., Gonsalves, A., Figueiras, A., Veiga, F.J., Basit, A.W., Rocha Gonsalves, A.M.: Microwave synthesis and in vitro stability of diclofenac-β-cyclodextrin conjugate for colon delivery. Carbohydr. Polym. 93, 512–517 (2013)

    Article  CAS  Google Scholar 

  28. Vieira, A.C., Murdan, S., Serra, A.C., Veiga, F.J., Gonsalves, A.M., Basit, A.W.: Influence of feeding regimens on rat gut fluids and colonic metabolism of diclofenac-β-cyclodextrin. Carbohydr. Polym. 112, 758–764 (2014)

    Article  CAS  Google Scholar 

  29. Hirayama, F., Minami, K., Uekama, K.: In-vitro evaluation of biphenylyl acetic acid-beta-cyclodextrin conjugates as colon-targeting prodrugs: drug release behaviour in rat biological media. J. Pharm. Pharmacol. 48, 27–31 (1996)

    Article  CAS  Google Scholar 

  30. Uekama, K., Minami, K., Hirayama, F.: 6 A-O-[(4-biphenylyl)acetyl]-α-, -β-, and -γ-cyclodextrins and 6 A-deoxy-6A-{[(4-biphenylyl)acetyl]amino}-α-, -β-, and -γ-cyclodextrins: potential prodrugs for colon-specific delivery. J. Med. Chem. 40, 2755–2761 (1997)

    Article  CAS  Google Scholar 

  31. Minami, K., Hirayama, F., Uekama, K.: Colon-specific drug delivery based on a cyclodextrin prodrug: release behavior of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J. Pharm. Sci. 87, 715–720 (1998)

    Article  CAS  Google Scholar 

  32. Ventura, C.A., Paolino, D., Pedotti, S., Pistara, V., Corsaro, A., Puglisi, G.: Synthesis, characterization and in vitro evaluation of dimethyl-beta-cyclodextrin-4-biphenylylacetic acid conjugate. J. Drug Target. 11, 233–240 (2003)

    Article  CAS  Google Scholar 

  33. Mhaske, D.V., Bariwal, J., Dev, S., Kadam, S.S., Dhaneshwar, S.R.: Synthesis and pharmacological evaluation of cyclodextrin conjugate produrugs of ibuprofen. Indian J. Pharm. Sci. 67, 432–437 (2005)

    CAS  Google Scholar 

  34. Namazi, H., Bahrami, S., Entezami, A.A.: Synthesis and controlled release of biocompatible prodrugs of β-cyclodextrin linked with PEG containing ibuprofen or indomethacin. Iran. Polym. J. 14, 921–927 (2005)

    CAS  Google Scholar 

  35. Kamada, M., Hirayama, F., Udo, K., Yano, H., Uekama, K.: Cyclodextrin conjugate-based controlled release system: repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. Control. Release. 82, 407–416 (2002)

    Article  CAS  Google Scholar 

  36. Hirayama, F., Kamada, M., Yano, H., Udo, K., Arima, H., Uekama, K.: Prolonged plasma levels of ketoprofen after oral administration of its α-cyclodextrin conjugate/ethylcellulose dispersion in rats. J. Incl. Phenom. Macrocycl. Chem. 44, 159–161 (2002)

    Article  CAS  Google Scholar 

  37. Wang, Z.Z., Ma, P.P., Luo, S.X., Huang, Q., Wei, S.J.: Synthesis and release characteristics of ketoprofen conjugated with PEG-graft-cyclodextrin. J. Control. Release. 213, e97–e98 (2015)

    Google Scholar 

  38. Wang, N., Wu, Q., Xiao, Y.M., Chen, C.X., Lin, X.F.: Regioselective synthesis of cyclodextrin mono-substituted conjugates of non-steroidal anti-inflammatory drugs at C-2 secondary hydroxyl by protease in non-aqueous media. Bioorg. Med. Chem. 13, 3667–3671 (2005)

    Article  CAS  Google Scholar 

  39. Dev, S., Deepali, M., Kadam, S., Dhaneshwar, S.: Synthesis and pharmacological evaluation of cyclodextrin conjugate prodrug of mefenamic acid. Indian J. Pharm. Sci. 69, 69–72 (2007)

    Article  CAS  Google Scholar 

  40. El-Kamel, A.H., Abdel-Aziz, A.A., Fatani, A.J., El-Subbagh, H.I.: Oral colon targeted delivery systems for treatment of inflammatory bowel diseases: synthesis, in vitro and in vivo assessment. Int. J. Pharm. 358, 248–255 (2008)

    Article  CAS  Google Scholar 

  41. Amidon, S., Brown, J.E., Dave, V.S.: Colon-targeted oral drug delivery systems: design trends and approaches. Aaps Pharmscitech. 16, 731–741 (2015)

    Article  CAS  Google Scholar 

  42. Hua, S., Marks, E., Schneider, J.J., Keely, S.: Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed-Nanotechnol. 11, 1117–1132 (2015)

    Article  CAS  Google Scholar 

  43. Jung, Y., Kim, Y.M.: What should be considered on design of a colon-specific prodrug? Expert Opin. Drug Deliv. 7, 245–258 (2010)

    Article  CAS  Google Scholar 

  44. Dahan, A., Zimmermann, E.M., Ben-Shabat, S.: Modern prodrug design for targeted oral drug delivery. Molecules. 19, 16489–16505 (2014)

    Article  Google Scholar 

  45. Mahfouz, N.M., Aboul-Fadl, T., Diab, A.K.: Metronidazole twin ester prodrugs: synthesis, physicochemical properties, hydrolysis kinetics and antigiardial activity. Eur. J. Med. Chem. 33, 675–683 (1998)

    Article  CAS  Google Scholar 

  46. Mahfouz, N.M., Hassan, M.A.: Synthesis, chemical and enzymatic hydrolysis, and bioavailability evaluation in rabbits of metronidazole amino acid ester prodrugs with enhanced water solubility. J. Pharm. Pharmacol. 53, 841–848 (2001)

    Article  CAS  Google Scholar 

  47. Bundgaard, H., Larsen, C., Thorbek, P.: Prodrugs as drug delivery systems XXVI. Preparation and enzymatic hydrolysis of various water-soluble amino acid esters of metronidazole. Int. J. Pharm. 18, 67–77 (1984)

    Article  CAS  Google Scholar 

  48. Wang, Z., Li, B., Ma, P., Yang, W., Liu, M., Huang, Q., Wei, S.: Preparation and in vitro evaluation of macrocyclic metronidazole conjugates as an oral colon-specific delivery system. J. Incl. Phenom. Macrocycl. Chem. 78, 501–504 (2014)

    Article  CAS  Google Scholar 

  49. Wang, Z., Liu, M.: Macromolecular drug conjugates, metronidazole-cyclodextrin prodrugs. In: 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB), IEEE Publications, (2012). doi: 10.1109/iCBEB.2012.267

  50. Carceller, E., Salas, J., Merlos, M., Giral, M., Ferrando, R., Escamilla, I., Ramis, J., Garcia-Rafanell, J., Forn, J.: Novel azo derivatives as prodrugs of 5-aminosalicylic acid and amino derivatives with potent platelet activating factor antagonist activity. J. Med. Chem. 44, 3001–3013 (2001)

    Article  CAS  Google Scholar 

  51. Jung, Y.J., Lee, J.S., Kim, Y.M.: Colon-specific prodrugs of 5-aminosalicylic acid: synthesis and in vitro/in vivo properties of acidic amino acid derivatives of 5-aminosalicylic acid. J. Pharm. Sci. 90, 1767–1775 (2001)

    Article  CAS  Google Scholar 

  52. Zou, M., Okamoto, H., Cheng, G., Hao, X., Sun, J., Cui, F., Danjo, K.: Synthesis and properties of polysaccharide prodrugs of 5-aminosalicylic acid as potential colon-specific delivery systems. Eur. J. Pharm. Biopharm. 59, 155–160 (2005)

    Article  CAS  Google Scholar 

  53. Zou, M.J., Cheng, G., Okamoto, H., Hao, X.H., An, F., Cui, F.D., Danjo, K.: Colon-specific drug delivery systems based on cyclodextrin prodrugs: in vivo evaluation of 5-aminosalicylic acid from its cyclodextrin conjugates. World J. Gastroenterol. 11, 7457–7460 (2005)

    Article  CAS  Google Scholar 

  54. Marchal, S., Hor, A.E., Millard, M., Gillon, V., Bezdetnaya, L.: Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs. 75, 1601–1611 (2015)

    Article  CAS  Google Scholar 

  55. Bildstein, L., Dubernet, C., Couvreur, P.: Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev. 63, 3–23 (2011)

    Article  CAS  Google Scholar 

  56. Davis, M.E.: Design and development of it-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv. Drug Deliv. Rev. 61, 1189–1192 (2009)

    Article  CAS  Google Scholar 

  57. Dev, R.K., Bali, V., Pathak, K.: Novel microbially triggered colon specific delivery system of 5-fluorouracil: statistical optimization, in vitro, in vivo, cytotoxic and stability assessment. Int. J. Pharm. 411, 142–151 (2011)

    Article  CAS  Google Scholar 

  58. Udo, K., Hokonohara, K., Motoyama, K., Arima, H., Hirayama, F., Uekama, K.: 5-Fluorouracil acetic acid/β-cyclodextrin conjugates: drug release behavior in enzymatic and rat cecal media. Int. J. Pharm. 388, 95–100 (2010)

    Article  CAS  Google Scholar 

  59. Wei, S.J., Luo, S.X., Huang, Q., Xu, L.S., Wang, Z.Z.: Regioselective synthesis, stability and release behaviors of the secondary 5-fluorouracil acetic acid/β-cyclodextrin conjugate for colon delivery. J. Incl. Phenom. Macrocycl. Chem. 84, 43–47 (2016)

    Article  CAS  Google Scholar 

  60. Luo, S.X., Zhang, R.X., Huang, Q., Xu, L.S., Wang, Z.Z.: Macromolecular drug conjugates II: chemical and enzymatic hydrolysis kinetics of the secondary 5-fluorouracil-1-acetic acid/ β-cyclodextrin conjugate. J. Incl. Phenom. Macrocycl. Chem. 86, 1–5 (2016)

    Article  Google Scholar 

  61. Lu, X., Ping, Y., Xu, F.J., Li, Z.H., Wang, Q.Q., Chen, J.H., Yang, W.T., Tang, G.P.: Bifunctional conjugates comprising β-cyclodextrin, polyethylenimine, and 5-fluoro-2′- deoxyuridine for drug delivery and gene transfer. Bioconjug. Chem. 21, 1855–1863 (2010)

    Article  CAS  Google Scholar 

  62. Li, H., Huang, D., Gao, Z., Lv, Y., Zhang, L., Cui, H., Zheng, J.: Scutellarin inhibits cell migration by regulating production of αvβ6 integrin and E-cadherin in human tongue cancer cells. Oncol. Rep. 24, 1153–1160 (2010)

    CAS  Google Scholar 

  63. Li-Weber, M.: New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 35, 57–68 (2009)

    Article  CAS  Google Scholar 

  64. Yang, B., Zhao, Y.L., Yang, X., Liao, X.L., Yang, J., Zhang, J.H., Gao, C.Z.: Scutellarin-cyclodextrin conjugates: synthesis, characterization and anticancer activity. Carbohydr. Polym. 92, 1308–1314 (2013)

    Article  CAS  Google Scholar 

  65. Tu, Q., Zhang, Y., Liu, R., Wang, J.C., Li, L., Nie, N., Liu, A., Wanng, L., Liu, W., Ren, L., Wang, X., Wang, J.: Active drug targeting of disease by nanoparticles functionalized with ligand to folate receptor. Curr. Med. Chem. 19, 3152–3162 (2012)

    Article  CAS  Google Scholar 

  66. Low, P.S., Henne, W.A., Doorneweerd, D.D.: Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129 (2008)

    Article  CAS  Google Scholar 

  67. Mizusako, H., Tagami, T., Hattori, K., Ozeki, T.: Active drug targeting of a folate-based cyclodextrin-doxorubicin conjugate and the cytotoxic effect on drug-resistant mammary tumor cells in vitro. J. Pharm. Sci. 104, 2934–2940 (2015)

    Article  CAS  Google Scholar 

  68. Oetelaar, P.J.M.V.D., Jansen, P.S.L., Melgers, P.A.T.A, Wagenaars, G.N., Kortenaar, P.B.W.T.: Stability assessment of peptide and protein drugs. J. Control. Release. 21, 11–21 (1992)

    Article  Google Scholar 

  69. Zhou, X.H., Po, A.L.W.: Peptide and protein drugs: I. Therapeutic applications, absorption and parenteral administration. Int. J. Pharm. 75, 97–115 (1991)

    Article  CAS  Google Scholar 

  70. Zhou, X.H., Po, A.L.W.: Peptide and protein drugs: II. Non-parenteral routes of delivery. Int. J. Pharm. 75, 117–130 (1991)

    Article  CAS  Google Scholar 

  71. Kompella, U.B., Lee, V.H.: Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv. Drug Deliv. Rev. 46, 211–245 (2001)

    Article  CAS  Google Scholar 

  72. Soares, A.F., Carvalho, R.A., Veiga, F.: Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine. 2, 183–202 (2007)

    Article  CAS  Google Scholar 

  73. Irie, T., Uekama, K.: Cyclodextrins in peptide and protein delivery. Adv. Drug Deliv. Rev. 36, 101–123 (1999)

    Article  CAS  Google Scholar 

  74. Varca, G.H., Andreo-Filho, N., Lopes, P.S., Ferraz, H.G.: Cyclodextrins: an overview of the complexation of pharmaceutical proteins. Curr. Protein Pept. Sci. 11, 255–263 (2010)

    Article  CAS  Google Scholar 

  75. Ruiz, G.Y., Zelenka, J., Pabon, Y.V., Iyer, A., Budesinsky, M., Kraus, T., Smith, C.I., Madder, A.: Cyclodextrin-peptide conjugates for sequence specific DNA binding. Org. Biomol. Chem. 13, 5273–5278 (2015)

    Article  Google Scholar 

  76. Girek, T., Goszczyński, T., Girek, B., Ciesielski, W., Boratyński, J., Rychter, P.: β-Cyclodextrin/protein conjugates as a innovative drug systems: synthesis and MS investigation. J. Incl. Phenom. Macrocycl. Chem. 75, 293–296 (2013)

    Article  CAS  Google Scholar 

  77. Goszczyński, T.M., Gawłowski, M., Girek, B., Kowalski, K., Boratynski, J., Girek, T.: Synthesis of β-cyclodextrin-lysozyme conjugates and their physicochemical and biochemical properties. J. Incl. Phenom. Macrocycl. Chem. 87, 1–8 (2017)

    Article  Google Scholar 

  78. Bertolla, C., Rolin, S., Evrard, B., Pochet, L., Masereel, B.: Synthesis and pharmacological evaluation of a new targeted drug carrier system: beta-cyclodextrin coupled to oxytocin. Bioorg. Med. Chem. Lett. 18, 1855–1858 (2008)

    Article  CAS  Google Scholar 

  79. Scollay, R.: Gene therapy: a brief overview of the past, present, and future. Ann. N. Y. Acad. Sci. 953, 26–30 (2001)

    Article  CAS  Google Scholar 

  80. Mintzer, M.A., Simanek, E.E.: Nonviral vectors for gene delivery. Chem. Rev. 109, 259–302 (2009)

    Article  CAS  Google Scholar 

  81. Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., Anderson, D.G.: Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014)

    Article  CAS  Google Scholar 

  82. Lai, W.F.: Cyclodextrins in non-viral gene delivery. Biomaterials. 35, 401–411 (2014)

    Article  CAS  Google Scholar 

  83. Zhang, J., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65, 1215–1233 (2013)

    Article  CAS  Google Scholar 

  84. Kuzuya, A., Ohnishi, T., Wasano, T., Nagaoka, S., Sumaoka, J., Ihara, T., Jyo, A., Komiyama, M.: Efficient guest inclusion by β-cyclodextrin attached to the ends of DNA oligomers upon hybridization to various DNA conjugates. Bioconjugate Chem. 20, 1643–1649 (2009)

    Article  CAS  Google Scholar 

  85. Ihara, T., Uemura, A., Futamura, A., Shimizu, M., Baba, N., Nishizawa, S., Teramae, N., Jyo, A.: Cooperative DNA probing using a β-cyclodextrin-DNA conjugate and a nucleobase-specific fluorescent ligand. J. Am. Chem. Soc. 131, 1386–1387 (2009)

    Article  CAS  Google Scholar 

  86. Futamura, A., Uemura, A., Imoto, T., Kitamura, Y., Matsuura, H., Wang, C. X., Ichihashi, T., Sato, Y., Teramae, N., Nishizawa, S., Ihara, T.: Rational design for cooperative recognition of specific nucleobases using β-cyclodextrin-modified DNAs and fluorescent ligands on DNA and RNA scaffolds. Chem. Eur. J. 19, 10526–10535 (2013)

    Article  CAS  Google Scholar 

  87. Yano, H., Hirayama, F., Arima, H., Uekama, K.: Preparation of prednisolone-appended α-, β- and γ-cyclodextrins: Substitution at secondary hydroxyl groups and in vitro hydrolysis behavior. J. Pharm. Sci. 90, 493–503 (2001)

    Article  CAS  Google Scholar 

  88. Yano, H., Hirayama, F., Arima, H., Uekama, K.: Prednisolone-appended alpha-cyclodextrin: alleviation of systemic adverse effect of prednisolone after intracolonic administration in 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis rats. J. Pharm. Sci. 90, 2103–2112 (2001)

    Article  CAS  Google Scholar 

  89. Yano, H., Hirayama, F., Kamada, M., Arima, H., Uekama, K.: Colon-specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. J. Control. Release. 79, 103–112 (2002)

    Article  CAS  Google Scholar 

  90. Liu, M., Lv, P., Liao, R., Zhao, Y., Yang, B.: Synthesis, characterization and biological activity of rhein-cyclodextrin conjugate. J. Mol. Struct. 1128, 239–244 (2016)

    Article  Google Scholar 

  91. Ma, P., Sun, J., Huang, Q., Wang, J., Wang, Z.: β-Cyclodextrin conjugates for the intestinal delivery of p-aminobenzoic acid: synthesis, and in vitro assessment. J. Incl. Phenom. Macrocycl. Chem. 83, 199–202 (2015)

    Article  CAS  Google Scholar 

  92. Prasad, K.N.: Butyric acid: a small fatty acid with diverse biological functions. Life Sci. 27, 1351–1358 (1980)

    Article  CAS  Google Scholar 

  93. Hirayama, F., Ogata, T., Yano, H., Arima, H., Udo, K., Takano, M., Uekama, K.: Release characteristics of a short-chain fatty acid, n-butyric acid, from its beta-cyclodextrin ester conjugate in rat biological media. J. Pharm. Sci. 89, 1486–1495 (2000)

    Article  CAS  Google Scholar 

  94. Cheng, J., Li, B., Ma, P., Liu, M., Wang, Z.: Synthesis and properties of macrocyclic butanoic acid conjugates as a promising delivery formulation for the nutrition of colon. Sci. World J. 2013, 914234 (2013)

    Google Scholar 

Download references

Acknowledgements

We would like to express sincere thanks to Mr. S. Wei, and Dr. X. Fu, School of Pharmacy, Ningxia Medical University, for their good advice, warm support and kind help. We thank Ms. B. Tian, Ms. T. Zhao, Ms. P. Ma, Ms. S. Luo, School of Pharmacy, Ningxia Medical University, for their excellent contribution to this study. This work was partially supported by the National Natural Science Foundation of China (Nos. 21506104, 21666031), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H.M., Zhang, R.X., Huang, Q. et al. Chemical conjugation with cyclodextrins as a versatile tool for drug delivery. J Incl Phenom Macrocycl Chem 89, 29–38 (2017). https://doi.org/10.1007/s10847-017-0743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0743-3

Keywords

Navigation