Skip to main content

Advertisement

Log in

Docking and physico-chemical properties of α- and β-cyclodextrin complex containing isopulegol: a comparative study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Isopulegol (ISOP) is a monoterpenoid alcohol presented in the essential oils of several plants that possesses therapeutic properties The aim of this work was prepare samples with ISOP and α- and β-cyclodextrins (α- and β-CD) through three different methods: physical mixture, paste method (PC) and slurry complexation (SC). In order to evaluate the formation of inclusion complexes, the techniques of differential scanning calorimetry, thermogravimetry/derivative thermogravimetry, fourier transform infrared spectroscopy, X-ray diffractometry (XRD), gas chromatography–mass spectrometry analyses (GC/MS), docking, nuclear magnetic resonance and scanning electron microscopy were considered. The analyses of the α-CD or β-CD/ISOP revealed the formation of a complex mainly through the PC and SC methods for α-CD and β-CD, respectively. XRD diffraction characteristics presented formation of a trend to new solid phase, which suggested the formation of inclusion complexes. The GC/MS demonstrated that the PC method was the best one to form complexation with α-CD (48.8 %). Concerning β-CD, the SC method exhibited the strongest complexation (68.3 %). Furthermore, the molecular theoretical docking study demonstrated that α-CD/ISOP inclusion complex formed a more stable complex than did the β-CD/ISOP inclusion complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Sousa, D.P.: Analgesic-like activity of essential oils constituents. Molecules 16(3), 2233–2252 (2011). doi:10.3390/molecules16032233

    Article  Google Scholar 

  2. Guimarães, A.G., Serafini, M.R., Quintans Jr., L.J.: Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin. Ther. Patents 24, 1–23 (2013)

    Google Scholar 

  3. Degenhardt, J., Kollner, T.G., Gershenzon, J.: Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15–16), 1621–1637 (2009). doi:10.1016/j.phytochem.2009.07.030

    Article  CAS  Google Scholar 

  4. Silva, M.I., de Aquino Neto, M.R., Neto, P.F.T., Moura, B.A., do Amaral, J.F., de Sousa, D.P., Vasconcelos, S.M.M., de Sousa, F.C.F.: Central nervous system activity of acute administration of isopulegol in mice. Pharmacol. Biochem. Behav. 88(2), 141–147 (2007). doi:10.1016/j.pbb.2007.07.015

    Article  CAS  Google Scholar 

  5. Lenardão, E.J., Botteselle, G.V., Azambuja, F., Perin, G., Jacob, R.G.: Citronellal as key compound in organic synthesis. Tetrahedron 63, 6671–6712 (2007)

    Article  Google Scholar 

  6. Silva, M.I., Silva, M.A., de Aquino Neto, M.R., Moura, B.A., de Sousa, H.L., de Lavor, E.P., de Vasconcelos, P.F., Macedo, D.S., de Sousa, D.P., Vasconcelos, S.M., de Sousa, F.C.: Effects of isopulegol on pentylenetetrazol-induced convulsions in mice: possible involvement of GABAergic system and antioxidant activity. Fitoterapia 80(8), 506–513 (2009). doi:10.1016/j.fitote.2009.06.011

    Article  CAS  Google Scholar 

  7. Bhatia, S.P., McGinty, D., Letizia, C.S., Api, A.M.: Fragrance material review on isopulegol. Food Chem. Toxicol. 46(Suppl 11), S185–S189 (2008). doi:10.1016/j.fct.2008.06.053

    Article  CAS  Google Scholar 

  8. Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J.M., Rogers, A.E., Saurat, J.H., Sipes, I.G., Tagami, H.: A toxicologic and dermatologic assessment of cyclic and non-cyclic terpene alcohols when used as fragrance ingredients. Food chem. Toxicol. 46(Suppl 11), S1–S71 (2008). doi:10.1016/j.fct.2008.06.085

    Google Scholar 

  9. Ishida, K., Obata, Y., Takayama, K.: Transdermal absorption promoter, and external skin formulation thereof. In: Google Patents (2013)

  10. Chen, Y., Cun, D., Quan, P., Liu, X., Guo, W., Peng, L., Fang, L.: Saturated long-chain esters of isopulegol as novel permeation enhancers for transdermal drug delivery. Pharm. Res. 31(8), 1907–1918 (2014). doi:10.1007/s11095-013-1292-0

    Article  CAS  Google Scholar 

  11. Chen, Y., Quan, P., Liu, X., Guo, W., Song, W., Cun, D., Wang, Z., Fang, L.: Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation. J. Pharm. Pharmacol. 67(9), 1232–1239 (2015). doi:10.1111/jphp.12428

    Article  CAS  Google Scholar 

  12. Hamoudi, M.C., Bourasset, F., Domergue-Dupont, V., Gueutin, C., Nicolas, V., Fattal, E., Bochot, A.: Formulations based on alpha cyclodextrin and soybean oil: an approach to modulate the oral release of lipophilic drugs. J. Controll. Release 161(3), 861–867 (2012). doi:10.1016/j.jconrel.2012.05.032

    Article  CAS  Google Scholar 

  13. Savjani, K.T., Gajjar, A.K., Savjani, J.K.: Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 195727 (2012). doi:10.5402/2012/195727

    Google Scholar 

  14. Venturini, C.G., Jäger, E., Oliveira, C.P., Bernardi, A., Battastini, A.M.O., Guterres, S.S., Pohlmann, A.R.: Formulation of lipid core nanocapsules. Colloids Surf. A 375(1–3), 200–208 (2011). doi:10.1016/j.colsurfa.2010.12.011

    Article  CAS  Google Scholar 

  15. Danhier, F., Ansorena, E., Silva, J.M., Coco, R., Le Breton, A., Préat, V.: PLGA-based nanoparticles: an overview of biomedical applications. J. Controll. Release 161(2), 505–522 (2012). doi:10.1016/j.jconrel.2012.01.043

    Article  CAS  Google Scholar 

  16. Rassu, G., Soddu, E., Cossu, M., Brundu, A., Cerri, G., Marchetti, N., Ferraro, L., Regan, R.F., Giunchedi, P., Gavini, E., Dalpiaz, A.: Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J. Controll. Release 201, 68–77 (2015). doi:10.1016/j.jconrel.2015.01.025

    Article  CAS  Google Scholar 

  17. Menezes, P.P., Serafini, M.R., Santana, B.V., Nunes, R.S., Quintans, L.J., Silva, G.F., Medeiros, I.A., Marchioro, M., Fraga, B.P., Santos, M.R., Araújo, A.A.: Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta 548, 45–50 (2012)

    Article  CAS  Google Scholar 

  18. Menezes, P.P., Serafini, M.R., Quintans-Júnior, L.J., Silva, G.F., Oliveira, J.F., Carvalho, F.M.S., Souza, J.C.C., Matos, J.R., Alves, P.B., Matos, I.L., Hădărugă, D.I., Araújo, A.A.S.: Inclusion complex of (-)-linalool and b-cyclodextrin. J. Therm. Anal. Calorim. 115, 2429–2437 (2014)

    Article  CAS  Google Scholar 

  19. Menezes Pdos, P., Araujo, A.A., Doria, G.A., Quintans-Junior, L.J., de Oliveira, M.G., dos Santos, M.R., de Oliveira, J.F., Matos Jdo, R., Carvalho, F.M., Alves, P.B., de Matos, I.L., dos Santos, D.A., Marreto, R.N., da Silva, G.F., Serafini, M.R.: Physicochemical characterization and analgesic effect of inclusion complexes of essential oil from Hyptis pectinata L. Poit leaves with beta-cyclodextrin. Current Pharm. Biotechnol. 16(5), 440–450 (2015)

    Article  Google Scholar 

  20. Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014). doi:10.1016/j.carbpol.2013.08.078

    Article  CAS  Google Scholar 

  21. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 62(11), 1607–1621 (2010). doi:10.1111/j.2042-7158.2010.01030.x

    Article  CAS  Google Scholar 

  22. Kurkov, S.V., Loftsson, T.: Cyclodextrins. Int. J. Pharm. 453, 167–180 (2013)

    Article  CAS  Google Scholar 

  23. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014). doi:10.1021/cr500081p

    Article  CAS  Google Scholar 

  24. Jambhekar, S.S., Breen, P.: Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today 21(2), 356–362 (2016). doi:10.1016/j.drudis.2015.11.017

    Article  CAS  Google Scholar 

  25. Jambhekar, S.S., Breen, P.: Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov. Today 21(2), 363–368 (2016). doi:10.1016/j.drudis.2015.11.016

    Article  CAS  Google Scholar 

  26. Valente, A.J.M., Söderman, O.: The formation of host–guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 205, 156–176 (2014). doi:10.1016/j.cis.2013.08.001

    Article  CAS  Google Scholar 

  27. Marques, H.M.C.: A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Frag. J. 25, 313–326 (2010)

    Article  Google Scholar 

  28. Marreto, R.N., Almeida, E.E.C.V., Alves, P.B., Niculau, E.S., Nunes, R.S., Matos, C.R.S., Araújo, A.A.S.: Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim. Acta 475, 53–58 (2008)

    Article  CAS  Google Scholar 

  29. Allinger, N.L.: A hydrocarbon force-field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  CAS  Google Scholar 

  30. Dewar, M.J.S.E., Zoebisch, G., Healy, E.F.: AM., S.J.J.P.: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)

    Article  CAS  Google Scholar 

  31. Cohen, N.C.: Guidebook on molecular modeling in drug design. Academic Press, San Diego (1996)

    Google Scholar 

  32. Leach, A.R.: Molecular modeling: principles and applications. Prentice Hall, London (2001)

    Google Scholar 

  33. Molegro. http://www.clcbio.com/products/molegro/#molecular-viewer. Accessed 14 Aug 2013

  34. Wolf, L.K.: New software and websites for the chemical enterprise. Chem. Eng. News 87, 31 (2009)

    Google Scholar 

  35. Priotti, J., Ferreira, M.J., Lamas, M.C., Leonardi, D., Salomon, C.J., Nunes, T.G.: First solid-state NMR spectroscopy evaluation of complexes of benznidazole with cyclodextrin derivatives. Carbohydr. Polym. 131, 90–97 (2015). doi:10.1016/j.carbpol.2015.05.045

    Article  CAS  Google Scholar 

  36. Hădărugă, D.I., Ünlüsayin, M., Gruia, A.T., Birău, C., Rusu, G., Hădărugă, N.G.: Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein J. Org. Chem. 12, 179–191 (2016). doi:10.3762/bjoc.12.20

    Article  Google Scholar 

  37. Giordano, F., Novak, C., Moyano, J.: Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim. Acta 380, 123–151 (2001)

    Article  CAS  Google Scholar 

  38. Prabu, S., Sivakumar, K., Swaminathan, M., Rajamohan, R.: Preparation and characterization of host–guest system between inosine and β-cyclodextrin through inclusion mode. Spectrochim. Acta A 147, 151–157 (2015). doi:10.1016/j.saa.2015.03.056

    Article  CAS  Google Scholar 

  39. Wang, X., Luo, Z., Xiao, Z.: Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr. Polym. 101, 1027–1032 (2014). doi:10.1016/j.carbpol.2013.10.042

    Article  CAS  Google Scholar 

  40. Zhang, W., Li, X., Yu, T., Yuan, L., Rao, G., Li, D., Mu, C.: Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. Food Res. Int. 74, 55–62 (2015). doi:10.1016/j.foodres.2015.04.029

    Article  CAS  Google Scholar 

  41. Rajendiran, N., Mohandoss, T., Venkatesh, G.: Investigation of inclusion complexes of sulfamerazine with α- and β-cyclodextrins: An experimental and theoretical study. Spectrochim. Acta A 124, 441–450 (2014). doi:10.1016/j.saa.2014.01.057

    Article  CAS  Google Scholar 

  42. Castronuovo, G., Niccoli, M.: Thermodynamics of inclusion complexes of natural and modified cyclodextrins with acetylsalicylic acid and ibuprofen in aqueous solution at 298 K. Thermochim. Acta 557, 44–49 (2013). doi:10.1016/j.tca.2013.01.037

    Article  CAS  Google Scholar 

  43. Rajendiran, N., Siva, S.: Inclusion complex of sulfadimethoxine with cyclodextrins: Preparation and characterization. Carbohydr. Polym. 101, 828–836 (2014). doi:10.1016/j.carbpol.2013.10.016

    Article  CAS  Google Scholar 

  44. Kohata, S., Jyodoi, K., Ohyoshi, A.: Thermal decomposition of cyclodextrins (α-, β-, γ-, and modified β-CyD) and of metal-(β-CyD) complexes in the solid phase. Thermochim. Acta 217, 187–198 (1993)

    Article  CAS  Google Scholar 

  45. Serafini, M.R., Menezes, P.P., Costa, L.P., Lima, C.M., Quintans Jr., L.J., Cardoso, J.C., Matos, J.R., Soares-Sobrinho, J.L., Grangeiro Jr., S., Nunes, P.S., Bonjadim, L.R., Araújo, A.A.S.: Interaction of p-cymene with β-cyclodextrin. J. Therm. Anal. Calorim. (2011). doi:10.1007/s10973-011-1736

    Google Scholar 

  46. Hădărugă, N.G., Hădărugă, D.I., Isengard, H.Z.: Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem. 132, 1741–1748 (2012)

    Article  Google Scholar 

  47. Wu, H., Liang, H., Yuan, Q., Wang, T., Yan, X.: Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 82(3), 613–617 (2010). doi:10.1016/j.carbpol.2010.05.020

    Article  CAS  Google Scholar 

  48. dos Santos, C., Buera, M.D.P., Mazzobre, M.F.: Phase solubility studies of terpineol with β-cyclodextrins and stability of the freeze-dried inclusion complex. Proced. Food Sci. 1, 355–362 (2011). doi:10.1016/j.profoo.2011.09.055

    Article  Google Scholar 

  49. Valle, M.D.: Cyclodextrins and their uses: a review. Process Biochem. 5, 1033–1046 (2004)

    Article  Google Scholar 

  50. Rajendiran, N., Siva, S., Saravanan, J.: Inclusion complexation of sulfapyridine with α- and β-cyclodextrins: spectral and molecular modeling study. J. Mol. Struct. 1054–1055, 215–222 (2013)

    Article  Google Scholar 

  51. Sambasevam, K.P., Mohamad, S., Sarih, N.M., Ismail, N.A.: Synthesis and characterization of the inclusion complex of beta-cyclodextrin and azomethine. Int. J. Mol. Sci. 14(2), 3671–3682 (2013). doi:10.3390/ijms14023671

    Article  CAS  Google Scholar 

  52. Ren, J., Yao, P., Cao, Y., Cao, J., Zhang, L., Wang, Y., Jia, L.: Application of cyclodextrin-based eluents in hydrophobic charge-induction chromatography: elution of antibody at neutral pH. J. Chromatogr. A 1352, 62–68 (2014). doi:10.1016/j.chroma.2014.05.060

    Article  CAS  Google Scholar 

  53. Budryn, G., Pałecz, B., Rachwał-Rosiak, D., Oracz, J., Zaczyńska, D., Belica, S., Navarro-González, I., Meseguer, J.M.V., Pérez-Sánchez, H.: Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chem. 168, 276–287 (2015). doi:10.1016/j.foodchem.2014.07.056

    Article  CAS  Google Scholar 

  54. Medarević, D., Kachrimanis, K., Djurić, Z., Ibrić, S.: Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci. 78, 273–285 (2015). doi:10.1016/j.ejps.2015.08.001

    Article  Google Scholar 

  55. Meinguet, C., Masereel, B., Wouters, J.: Preparation and characterization of a new harmine-based antiproliferative compound in complex with cyclodextrin: increasing solubility while maintaining biological activity. Eur. J. Pharm. Sci. 77, 135–140 (2015). doi:10.1016/j.ejps.2015.06.010

    Article  CAS  Google Scholar 

  56. Ceborska, M., Szwed, K., Suwinska, K.: beta-Cyclodextrin as the suitable molecular container for isopulegol enantiomers. Carbohydr. Polym. 97(2), 546–550 (2013). doi:10.1016/j.carbpol.2013.04.097

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES, CNPq, FINEP and FAPITEC/SE for the financial support and fellowships. We thank M. L. V. Moreno, C. P. Figueira and Prof. A. L. Rangel for the images of SEM made in the Gonçalo Moniz Research Center, at the Oswaldo Cruz Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mairim Russo Serafini.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Passos Menezes, P., Dória, G.A.A., de Souza Araújo, A.A. et al. Docking and physico-chemical properties of α- and β-cyclodextrin complex containing isopulegol: a comparative study. J Incl Phenom Macrocycl Chem 85, 341–354 (2016). https://doi.org/10.1007/s10847-016-0633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0633-0

Keywords

Navigation