Skip to main content
Log in

Evaluation of actarit/γ-cyclodextrin complex prepared by different methods

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This study used actarit (ACT), an antirheumatic drug, to examine the molecular interaction of ACT and γ-CD in a solid state as a result of cogrinding or freeze-drying and it assessed the dissolution of ACT. Differential scanning calorimetry revealed that coground ACT and γ-CD at molar ratios of 1:2 and 1:3 and freeze-dried ACT and γ-CD at molar ratios of 1:1 and 1:2 lacked an endothermic peak due to melting of ACT crystals. Thus, coground ACT and γ-CD at a molar ratio of 1:2 had molecular interaction, as did freeze-dried ACT and γ-CD at a molar ratio of 1:1. Powder x-ray diffraction revealed that coground and humidified ACT and γ-CD at a molar ratio of 1:2 produced a characteristic diffraction peak at 2θ = 15.2° and 16.5° due to the cage structure of γ-CD. In addition, freeze-dried ACT and γ-CD at a molar ratio of 1:1 that had been humidified produced a diffraction peak at 2θ = 6.0° and 15.9° characteristic of a hexagonal structure with head-to-head channels due to γ-CD. Assessment of dissolution revealed that ground mixtures (GMs) and freeze-dried mixtures had improved dissolution of ACT compared to ACT, ground ACT alone, and physical mixtures. The mechanism for this is presumably the result of molecular interaction in a solid state or molecular interaction in an aqueous solution. 1H–1H NOESY NMR spectra suggested that in a GM of ACT and γ-CD the benzene ring and methyl group of ACT partially enter the CD cavity. In addition, spectra for freeze-dried ACT and γ-CD suggested that protons of the methylene group of ACT and the benzene ring of ACT partially enter the CD cavity. These findings indicate that ACT and γ-CD inclusion complexes feature different forms of inclusion depending on how they are prepared, e.g., cogrinding or freeze-drying. Findings also indicated that selection of a method of preparation may play a major role in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu, J., Johnston, K.P., Williams, R.O.: Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int. J. Pharm. 271, 145–154 (2004)

    Article  CAS  Google Scholar 

  2. Pankajkumar, S.Y., Kumar, V., Pratap, S.U., Bhat, R.H., Mazumder, B.: Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol. Saudi. Pharm. J. 22, 77–84 (2013)

    Google Scholar 

  3. Prabhu, S., Ortega, M., Ma, C.: Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301, 209–216 (2005)

    Article  CAS  Google Scholar 

  4. Wongmekiat, A., Tozuka, Y., Moribe, K., Oguchi, T., Yamamoto, K.: Preparation of drug nanoparticles by co-grinding with cyclodextrin: formation mechanism and factors affecting nanoparticle formation. Chem. Pharm. Bull. 55, 359–363 (2007)

    Article  CAS  Google Scholar 

  5. Tao, T., Zhao, Y., Wu, J., Zhou, B.: Preparation and evaluation of itraconazole dihydrochloride for the solubility and dissolution rate enhancement. Int. J. Pharm. 367, 109–114 (2009)

    Article  CAS  Google Scholar 

  6. Yeo, L., Kenneth, D., Harris, M.: Definitive structural characterization of the conventional low-temperature host structure in urea inclusion compounds. Acta. Cryst. B53, 822–830 (1997)

    Article  CAS  Google Scholar 

  7. Miki, K., Masui, A., Kasai, N., Miyata, M., Shibakami, M., Takemoto, K.: New channel-type inclusion compound of steroidal bile acid. Structure of a 1:1 complex between cholic acid and acetophenone. J. Am. Chem. Soc. 110, 6594–6596 (1988)

    Article  CAS  Google Scholar 

  8. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  9. Dollo, G., Le, C.P., Chollet, M., Chevanne, F., Bertault, M., Burgot, J.L., Le, V.R.: Improvement in solubility and dissolution rate of 1,2-dithiole-3-thiones upon complexation with beta-cyclodextrin and its hydroxypropyl and sulfobutyl ether-7 derivatives. J. Pharm. Sci. 88, 889–895 (1999)

    Article  CAS  Google Scholar 

  10. Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)

    Article  CAS  Google Scholar 

  11. Nagase, Y., Hirata, M., Wada, K., Arima, H., Hirayama, F., Irie, T., Kikuchi, M., Uekama, K.: Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int. J. Pharm. 229, 163–172 (2001)

    Article  CAS  Google Scholar 

  12. Cabral-Marques, H., Almeida, R.: Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 73, 121–129 (2009)

    Article  CAS  Google Scholar 

  13. Mangolim, C.S., Moriwaki, C., Nogueira, A.C., Sato, F., Baesso, M.L., Neto, A.M., Matioli, G.: Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food. Chem. 153, 361–370 (2014)

    Article  CAS  Google Scholar 

  14. Iwata, M., Fukami, T., Kawashima, D., Sakai, M., Furuishi, T., Suzuki, T., Tomono, K., Ueda, H.: Effectiveness of mechanochemical treatment with cyclodextrins on increasing solubility of glimepiride. Pharmazie. 64, 390–394 (2009)

    CAS  Google Scholar 

  15. Ogawa, N., Higashi, K., Nagase, H., Endo, T., Moribe, K., Loftsson, T., Yamamoto, K., Ueda, H.: Effects of cogrinding with <beta>-cyclodextrin on the solid state fentanyl. J. Pharm. Sci. 99, 5019–5029 (2010)

    Article  CAS  Google Scholar 

  16. Uekama, K., Hirayama, F., Ikeda, K., Inaba, K.: Utilization of cyclodextrin complexation for separation of E, A, and B prostaglandins by ion-exchange liquid chromatography. J. Pharm. Sci. 66, 706–710 (1977)

    Article  CAS  Google Scholar 

  17. Al Omari, A.A., Al, O.M.M., Badwan, A.A., Al-Sou’od, K.A.: Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state. J. Pharm. Biomed. Anal. 54, 503–509 (2011)

    Article  CAS  Google Scholar 

  18. Torikai, E., Kageyama, Y., Takahashi, M., Nagano, A.: The effect of methotrexate on bone metabolism markers in patients with rheumatoid arthritis. Mod. Rheumatol. 16, 350–354 (2006)

    Article  CAS  Google Scholar 

  19. Ye, J., Wang, Q., Zhou, X., Zhang, N.: Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm. 352, 273–279 (2008)

    Article  CAS  Google Scholar 

  20. Inoue, Y., Yamazoe, T., Watanabe, S., Murata, I., Kanamoto, I.: Examination of intermolecular interaction as a result of cogrinding actarit and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 78, 457–464 (2014)

    Article  CAS  Google Scholar 

  21. Xiao, C.F., Li, K., Huang, R., He, G.J., Zhang, J.Q., Zhu, L., Yang, Q.Y., Jiang, K.M., Jin, Y., Lin, J.: Investigation of inclusion complex of epothilone A with cyclodextrins. Carbohydr. Polym. 102, 297–305 (2014)

    Article  CAS  Google Scholar 

  22. Inoue, Y., Hasegawa, N., Tozuka, Y., Yonemochi, E., Oguchi, T., Higashi, K., Moribe, K., Yamamoto, K.: Molecular states of p-dimethylaminobenzonitrile coground with β-cyclodextrin investigated using solid-state fluorescence spectroscopy. Chem. Pharm. Bull. 59, 1299–1302 (2011)

    Article  CAS  Google Scholar 

  23. Chung, J.W., Guo, Y., Priestley, R.D., Kwak, S.Y.: Colloidal gold nanoparticle formation derived from self-assembled supramolecular structure of cyclodextrin/Au salt complex. Nanoscale. 3, 1766–1772 (2011)

    Article  CAS  Google Scholar 

  24. Toropainen, T., Heikkilä, T., Leppänen, J., Matilainen, L., Velaga, S., Jarho, P., Carlfors, J., Lehto, V.P., Järvinen, T., Järvinen, K.: Crystal structure changes of gamma-cyclodextrin after the SEDS process in supercritical carbon dioxide affect the dissolution rate of complexed budesonide. Pharm. Res. 6, 1058–1066 (2007)

    Article  Google Scholar 

  25. Higashi, K., Ideura, S., Waraya, H., Limwikrant, W., Moribe, K., Yamamoto, K.: Simultaneous dissolution of naproxen and flurbiprofen from a novel ternary gamma-cyclodextrin complex. Chem. Pharm. Bull. 58, 769–772 (2010)

    Article  CAS  Google Scholar 

  26. Anzai, K., Mizoguchi, J., Yanagi, T., Hirayama, F., Arima, H., Uekama, K.: Improvement of dissolution properties of a new Helicobacter pylori eradicating agent (TG44) by inclusion complexation with beta-cyclodextrin. Chem. Pharm. Bull. 55, 1466–1470 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Cyclo Chem Co. Ltd. for providing γ-CD. The authors also wish to sincerely thank Nippon Shinyaku Corporation for providing ACT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Inoue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Watanabe, S., Suzuki, R. et al. Evaluation of actarit/γ-cyclodextrin complex prepared by different methods. J Incl Phenom Macrocycl Chem 81, 161–168 (2015). https://doi.org/10.1007/s10847-014-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0445-z

Keywords

Navigation