Skip to main content
Log in

Synthesis of C 3 -symmetric tri(alkylamino) guests and their interaction with cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of a series of star-shaped C 3 -symmetric amines and their inclusion complexation properties toward α-, β-, γ-cyclodextrins and their permethylated derivatives has been described. The star molecules comprise of 1,3,5-trisubstited benzene core and the points formed by (alkylamino)methyl or 4-((alkylamino)methyl)phenyl groups. The modes of host–guest interaction were studied by UV–Vis spectroscopy, ITC, 1H NMR and 2D-NMR (NOESY). It was found that star molecules containing (tert-butylamino)methyl, (adamantan-1-ylamino)methyl, 4-((isopropylamino)methyl)phenyl, 4-((tert-butylamino)methyl)phenyl and protonated 4-((adamantan-1-ylamino)methyl)phenyl points form strong host–guest complexes with β-cyclodextrin. It was also proved that the largest C 3 -symmetric guest can form complexes with β-cyclodextrin with stoichiometry 3 which is required for construction of dendrimer supramolecular structures. None of the investigated amines forms a strong complex with permethylated cyclodextrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Khan, A.R., Forgo, P., Stine, K.J., D’Souza, V.T.: Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)

    Article  CAS  Google Scholar 

  3. Fielding, L., McKellar, S.C., Florence, A.J.: Precision studies in supramolecular chemistry: a 1H NMR study of hydroxymethoxyacetophenone/β-cyclodextrin complexes. Magn. Reson. Chem. 49, 405–412 (2011)

    Article  CAS  Google Scholar 

  4. Entrena, A., Jaime, C.: Cyclodextrin inclusion complexes. molecular mechanics calculations on the modification of π-face selectivity†. J. Org. Chem. 62, 5923–5927 (1997)

    Article  CAS  Google Scholar 

  5. Schneider, H.-J., Hacket, F., Rüdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  6. Tošner, Z., Aski, S.N., Kowalewski, J.: Rotational dynamics of adamantanecarboxylic acid in complex with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 55, 59–70 (2006)

    Article  Google Scholar 

  7. Stojanov, M., Wimmer, R., Larsen, K.L.: Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties. J. Pharm. Sci. 100, 3177–3185 (2011)

    Article  CAS  Google Scholar 

  8. Guerrero-Martínez, A., Montoro, T., Viñas, M.H., Tardajos, G.: Complexation and chiral drug recognition of an amphiphilic phenothiazine derivative with β-cyclodextrin. J. Pharm. Sci. 97, 1484–1498 (2008)

    Article  Google Scholar 

  9. Roik, N.V., Belyakova, L.A.: Thermodynamic, IR spectral and X-ray diffraction studies of the “β-cyclodextrin-para-aminobenzoic acid” inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 69, 315–319 (2010)

    Article  Google Scholar 

  10. Wenz, G., Han, B.-H., Müller, A.: Cyclodextrin Rotaxanes and Polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  CAS  Google Scholar 

  11. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)

    Article  CAS  Google Scholar 

  12. Chen, Y., Zhang, Y.-M., Liu, Y.: Multidimensional nanoarchitectures based on cyclodextrins. Chem. Commun. 46, 5622–5633 (2010)

    Article  CAS  Google Scholar 

  13. Ilioudis, C.A., Tocher, D.A., Steed, J.W.: A highly efficient, preorganized macrobicyclic receptor for halides based on ch··· and nh···anion interactions. J. Am. Chem. Soc. 126, 12395–12402 (2004)

    Article  CAS  Google Scholar 

  14. Han, W., Liu, C., Jin, Z.: Aerobic ligand-free suzuki coupling reaction of aryl chlorides catalyzed byin situ generated palladium nanoparticles at room temperature. Adv. Synth. Catal. 350, 501–508 (2008)

    Article  CAS  Google Scholar 

  15. Kathiresan, M., Walder, L., Ye, F., Reuter, H.: Viologen-based benzylic dendrimers: selective synthesis of 3,5-bis(hydroxymethyl)benzylbromide and conformational analysis of the corresponding viologen dendrimer subunit. Tetrahedron Lett. 51, 2188–2192 (2010)

    Article  CAS  Google Scholar 

  16. Nakazaki, M., Yamamoto, K., Toya, T.: Syntheses and chemical characterization of tris-bridged [2.2.2]cyclophanes with a triphenylmethyl component. J. Org. Chem. 46, 1611–1615 (1981)

    Article  CAS  Google Scholar 

  17. Wenz, G.: Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives. Beilstein J. Org. Chem. 8, 1890–1895 (2012)

    Article  CAS  Google Scholar 

  18. Rekharsky, M.V., Inoue, Y.: Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  CAS  Google Scholar 

  19. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford (1990)

    Google Scholar 

  20. Nakazono, K., Takashima, T., Arai, T., Koyama, Y., Takata, T.: High-yield One-pot synthesis of permethylated α-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction. Macromolecules 43, 691–696 (2010)

    Article  CAS  Google Scholar 

  21. Iannazzo, L., Vollhardt, K.P.C., Malacria, M., Aubert, C., Gandon, V.: Alkynylboronates and -boramides in coi- and RhI-catalyzed [2 + 2+2] cycloadditions: construction of oligoaryls through selective suzuki couplings. Eur. J. Org. Chem. 2011, 3283–3292 (2011)

    Article  CAS  Google Scholar 

  22. Brunel, J., Mongin, O., Jutand, A., Ledoux, I., Zyss, J., Blanchard-Desce, M.: Propeller-shaped octupolar molecules derived from triphenylbenzene for nonlinear optics: synthesis and optical studies. Chem. Mater. 15, 4139–4148 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic (project No. MSM0021620857) and Grant Agency of the Czech Republic (project No. 13-01440S). Help of Dr. S. Filippov with ITC measurements is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Jindřich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (PDF 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednaříková, T., Tošner, Z., Horský, J. et al. Synthesis of C 3 -symmetric tri(alkylamino) guests and their interaction with cyclodextrins. J Incl Phenom Macrocycl Chem 81, 141–152 (2015). https://doi.org/10.1007/s10847-014-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0443-1

Keywords

Navigation