Skip to main content
Log in

Liposome solubilization induced by complexation with dimeric β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Dimeric β-cyclodextrins (β-CD) were prepared from the reaction of native β-CD with epichlorohydrin under basic conditions, and the effects on the diacetylene (DA) and polydiacetylene (PDA) liposomes have been investigated. Vesicular DA was solubilized in the presence of dimeric β-CD with the consequent inhibition of polymerization. The result is attributed to the formation of a complex between dimeric β-CD and DA liposomes, and it is clearly differentiated from that of monomeric β-CD. Furthermore, the ordered supramolecular structure of PDA was perturbed by the dimeric β-CD, which was detected from the visible color change. Finally, the morphological characteristics and size of PDA in the absence and presence of dimeric β-CD were examined using transmission electron microscopy and dynamic light scattering The results show fused structure of size more than 200 nm along with the deformation of the vesicles, and they represent a novel phenomenon of liposome structure induced by complexation with dimeric β-CD. The evaluated physicochemical characteristics can be applied to the development of carbohydrate-based detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Charych, D.H., Naqy, J.O., Spevak, W., Bednarski, M.D.: Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 261, 585–588 (1993)

    Article  CAS  Google Scholar 

  2. Ahn, D.J., Kim, J.M.: Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors. Acc. Chem. Res. 41, 805–816 (2008)

    Article  CAS  Google Scholar 

  3. Charoenthai, N., Pattanatornchai, T., Wacharasindhu, S., Sukwattanasinitt, M., Traiphol, R.: Roles of head group architecture and side chain length on colorimetric response of polydiacetylene vesicles to temperature, ethanol and pH. J. Colloid Interface Sci. 360, 565–573 (2011)

    Article  CAS  Google Scholar 

  4. Olmsted III, J., Strand, M.: Fluorescence of polymerized diacetylene bilayer films. J. Phys. Chem. 87, 4790–4792 (1983)

    Article  CAS  Google Scholar 

  5. Charych, D., Cheng, Q., Reichert, A., Kuziemko, G., Stroh, M., Nagy, J.O., Spevak, W., Stevens, R.C.: A ‘litmus test’ for molecular recognition using artificial membranes. Chem. Biol. 3, 113–120 (1996)

    Article  CAS  Google Scholar 

  6. Singh, M., Sharma, R., Banerjee, U.C.: Biotechnological applications of cyclodextrins. Biotechnol. Adv. 20, 341–359 (2002)

    Article  CAS  Google Scholar 

  7. Easton, C.J., Lincoln, S.F.: Modified cyclodextrins: scaffolds and templates for supramolecular chemistry. Imperial College Press, London (1999)

    Book  Google Scholar 

  8. Liu, Y., Chen, Y.: Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 10, 681–691 (2006)

    Article  Google Scholar 

  9. Wahlström, A., Cukalevski, R., Danielsson, J., Jarvet, J., Onagi, H., Julius Rebek, J., Linse, S., Gräslund, S.: Specific binding of a β-cyclodextrin dimer to the amyloid β peptide modulates the peptide aggregation process. Biochemistry 51, 4280–4289 (2012)

    Article  Google Scholar 

  10. Breslow, R., Chung, S.: Strong binding of ditopic substrates by a doubly linked occlusive C1 clamshell as distinguished from an aversive C2 loveseat cyclodextrin dimer. J. Am. Chem. Soc. 112, 9659–9660 (1990)

    Article  CAS  Google Scholar 

  11. De Jong, M.R., Engbersen, J.F., Huskens, J., Reinhoudt, D.N.: Cyclodextrin dimers as receptor molecules for steroid sensors. Chemistry 6, 4034–4040 (2000)

    Article  Google Scholar 

  12. Tabushi, I., Kuroda, Y., Shimokawa, K.: Duplex cyclodextrin. J. Am. Chem. Soc. 101, 1614–1615 (1979)

    Article  CAS  Google Scholar 

  13. Kim, J.M., Lee, J.S., Woo, S.Y., Ahn, D.J.: Unique effects of cyclodextrins on the formation and colorimetric transition of polydiacetylene vesicles. Macromol. Chem. Phys. 206, 2299–2306 (2005)

    Article  CAS  Google Scholar 

  14. Renard, E., Deratani, A., Volet, G., Sebille, B.: Preparation and characterization of water soluble high molecular weight β-cyclodextrin-epichlorohydrin polymers. Eur. Polym. J. 33, 49–57 (1997)

    Article  CAS  Google Scholar 

  15. Li, J., Xiao, H., Li, J., Zhong, Y.: Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. Int. J. Pharm. 278, 329–342 (2004)

    Article  CAS  Google Scholar 

  16. Kuniak, L., Marchessault, R.H.: Study of the crosslinking reaction between epichlorohydrin and starch. Starch Starke 24, 110–116 (1972)

    Article  CAS  Google Scholar 

  17. Schneider, H.-J., Hacket, F., Rűdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

  18. Timoszyk, A., Latanowicz, L.: Interactions of sialic acid with phophatidylcholine liposomes studies by 2D NMR spectroscopy. Acta Biochim. Pol. 60, 539–546 (2013)

    Google Scholar 

  19. Nie, X., Wang, G.: Synthesis and self-assembling properties of diacetylene-containing glycolipids. J. Org. Chem. 71, 4734–4741 (2006)

    Article  CAS  Google Scholar 

  20. Lee, S., Kim, J.-M.: α-Cyclodextrin: a molecule for testing colorimetric reversibility of polydiacetylene supramolecules. Macromolecules 40, 9202–9204 (2007)

    Google Scholar 

  21. Kolusheva, S., Boyer, L., Jelinek, R.: A colorimetric assay for rapid screening of antimicrobial peptides. Nat. Biotechnol. 18, 225–227 (2000)

    Article  CAS  Google Scholar 

  22. Yaroslavov, A.A., Sybachin, A.V., Kesselman, E.J., Talmon, Y., Rizvi, S.A.A., Menger, F.M.: Liposome fusion rates depend upon the conformation of polycation catalysts. J. Am. Chem. Soc. 133, 2881–2883 (2011)

    Article  CAS  Google Scholar 

  23. Yaroslavov, A.A., Efimova, A.A., Lobyshev, V.I., Kabanov, V.A.: Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. Biochim. Biophys. Acta-Biomembr. 1560, 14–24 (2002)

    Article  CAS  Google Scholar 

  24. Kragh-Hanse, U., Maire, M.I., Møller, J.V.: The mechanism of detergent solubilization of liposoems and protein-containing membranes. Biophys. J. 75, 2932–2946 (1998)

    Article  Google Scholar 

  25. Kozlovsky, Y., Chernomordik, L.V., Kozlov, M.M.: Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys. J. 83, 2634–2651 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0024008) and supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0006686). SDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunho Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, E., Choi, J.M., Jeong, D. et al. Liposome solubilization induced by complexation with dimeric β-cyclodextrin. J Incl Phenom Macrocycl Chem 80, 427–435 (2014). https://doi.org/10.1007/s10847-014-0431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0431-5

Keywords

Navigation